欢迎来到第一文库网! | 帮助中心 第一文库网-每个人都是第一
第一文库网
全部分类
  • 研究报告>
  • 学术论文>
  • 全科教育>
  • 应用文档>
  • 行业资料>
  • 企业管理>
  • 技术资料>
  • 生活休闲>
  • ImageVerifierCode 换一换
    首页 第一文库网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    课题三角函数的图象与性质二.docx

    • 资源ID:833087       资源大小:16.24KB        全文页数:2页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    扫码关注公众号登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    课题三角函数的图象与性质二.docx

    课题:三角函数的图象与性质(二)课型:新授课课时计划:本课题共安排一课时教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性教学过程:一、创设情境,引入新课我们已经知道正、余弦函数都是周期函数,那它们除此之外还有哪些性质呢?二、新课讲解知识要点:1、定义域:函数y=sin%及y=COSx的定义域都是(-8,+8),即实数集R2、值域:函数y=sinX,=xR的值域都是-1,1理解:(I)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以卜iM1,cos1,即一1<sinx01,-1cos1J1冗(2)函数y=sinx在X=+Z)时,y取最大值1,当X=2%)一5,(ZZ)时,y取最小值/;函数y=8sx在=2Ar,(攵Z)时,y取最大值I,当X=2左;r+乃,(ZZ)时,y取最小值“。3、周期性正弦函数y=sin1,xR和余弦函数y=cosx,xR是周期函数,2%乃(AZ且左Wo)都是它们的周期,最小正周期是2万。4、奇偶性正弦函数y=sinx,xR是奇函数,余弦函数y=8sx,xR是偶函数。理解:(1)由诱导公式sin(-x)=-SinX,cos(-x)=cosx可知以上结论成立:(2)反映在图象上,正弦曲线关于原点0对称,余弦曲线关于y轴对称。5、单调性(1)由正弦曲线可以看出:当X由一工增大到C时,曲线逐渐上升,SinX由-】增大到1:当X由三增222大到时,曲线逐渐下降,SinX由1减至-I,由正弦函数的周期性知道:2正弦函数y=sinx在每一个闭区间一+2Kr,g+2%4(AZ)上,都从-1增大到1,是增函数;在每个闭区间-+2k,-+2k(ZZ)上,都从1减小到-1,是减函数。(2)由余弦曲线可以知道:余弦函数y=cosx在每一个区间(2R-1)笈,2Z(ZZ)上,都从-1增大到1,是增函数:在每一个闭区间2hr,(2R+1)(AZ)上,都从1减小到-1,是减函数。练习:不求值,分别比较下列各组中两个三角函数值的大小:1514(1)sin250°,sin260o:(2)cos万与COS89例题剖析例3、求下列函数的最大值及取得最大值时自变量X的集合:(1)y-cos;(2)y=2-sin2x例4、求函数y=sin(2x+?)的单调增区间。练习:K(1)求函数y=J2sinx+1的定义域:(2)求函数y=cos2+2sinx-2的值域:2、课本P33练习4、5、6作业:P464、5(1)(2)、6

    注意事项

    本文(课题三角函数的图象与性质二.docx)为本站会员(lao****ou)主动上传,第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第一文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2022 001doc.com网站版权所有   

    经营许可证编号:宁ICP备2022001085号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



    收起
    展开