欢迎来到第一文库网! | 帮助中心 第一文库网-每个人都是第一
第一文库网
全部分类
  • 研究报告>
  • 学术论文>
  • 全科教育>
  • 应用文档>
  • 行业资料>
  • 企业管理>
  • 技术资料>
  • 生活休闲>
  • ImageVerifierCode 换一换
    首页 第一文库网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    分形几何趣味谈.docx

    • 资源ID:576309       资源大小:14.85KB        全文页数:3页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    扫码关注公众号登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    分形几何趣味谈.docx

    分形几何趣味谈数千年以来,我们涉及的和研究的主要是欧氏几何。欧氏几何主要是基于中小尺度上,点线、面之间的关系,这种观念与特定时期人类的实践认识水平是相适应的,有什么样的认识水平就有什么样的几何学。当人们全神贯注于机械运动时,头脑中的图象多是一些圆锥曲线、线段组合,受认识主客体的限制,欧氏几何具有很强的“人为特征。这样说并非要否认欧氏几何的辉煌历史,只是我们应当认识到欧氏几何是人们认识、把握客观世界的一种工具、但不是唯一的工具。进入20世纪以后,科学的开展极为迅速。特别是二战以后,大量的新理论、新技术以及新的研究领域不断涌现,同以往相比,人们对物质世界以及人类社会的看法有了很大的不同。其结果是,有些研究对象已经很难用欧氏几何来描述了,如对植物形态的描述,对晶体裂痕的研究,等等。美国数学家BRIande1brot曾出这样一个著名的问题:英格兰的海岸线到底有多长?这个问题在数学上可以理解为:用折线段拟合任意不规那么的连续曲线是否一定有效?这个问题的提出实际上是对以欧氏几何为核心的传统几何的挑战。实际上,数学家们很早就认识到,有的曲线不能用欧式几何与微积分研究其长度。但那时解决方法是讨论具备什么条件的曲线有长度。而没有长度的曲线就没有深入研究。此外,在湍流的研究。自然画面的描述等方面,人们发现传统几何依然是无能为力的。因此就产生一种新的能够更好地描述自然图形的几何学,就是分形几何。下面是Kohn克赫)曲线。谢宾斯奇fw.Sierpinski,1882-1969)构造了谢氏曲线、地毯、海绵。皮亚诺(Peano)曲线1975年,Mande1brot在其?自然界中的分形几何?一书中引入了分形(fracta1)这一概念。从字面意义上讲,fracta1是碎块、碎片的意思,然而这并不能概括MandeIbrOt的分形概念,尽管目前还没有一个让各方都满意的分形定义,但在数学上大家都认为分形有以下凡个特点:1)具有无限精细的结构;比例自相似性;(3)一般它的分数维大子它的拓扑维数;(4)可以由非常简单的方法定义,并由递归、迭代产生。据说,南非海岸线的维数是102,英国西岸的维数是125。分形无处不在。分形几何学已在自然界与物理学中得到了应用。如在显微镜下观察落入溶液中的一粒花粉,会看见它不间断地作无规那么运动(布朗运动),这是花粉在大量液体分子的无规那么碰撞(每秒钟多达十亿亿次)下表现的平均行为。布朗粒子的轨迹,由各种尺寸的折线连成。只要有足够的分辨率,就可以发现原以为是直线段的局部,其实由大量更小尺度的折线连成。这是一种处处连续,但又处处无导数的曲线。这种布朗粒子轨迹的分维是2,大大高于它的拓扑维数1在某些电化学反响中,电极附近成绩的固态物质,以不规那么的树枝形状向外增长。受到污染的一些流水中,粘在藻类植物上的颗粒和胶状物,不断因新的沉积而生长,成为带有许多须须毛毛的枝条状,就可以用分维。自然界中更大的尺度上也存在分形对象。一枝粗干可以分出不规那么的枝杈,每个枝杈继续分为细杈,至少有十几次分支的层次,可以用分形几何学去测量。有人研究了某些云彩边界的几何性质,发现存在从1公里到IOoO公里的无标度区。小于1公里的云朵,更受地形概貌影响,大于IOOO公里时,地球曲率开始起作用。大小两端都受到一定特征尺度的限制,中间有三个数量级的无标度区,这已经足够了。分形存在于这中间区域。近几年在流体力学不稳定性、光学双稳定器件、化学震荡反映等试验中,都实际测得了混沌吸引子,并从实验数据中计算出它们的分维。学会从实验数据测算分维是最近的一大进展。分形几何学在物理学、生物学上的应用也正在成为有充实内容的研究领域。

    注意事项

    本文(分形几何趣味谈.docx)为本站会员(lao****ou)主动上传,第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第一文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2022 001doc.com网站版权所有   

    经营许可证编号:宁ICP备2022001085号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



    收起
    展开