应用题鸡兔同笼问题五种基本公式和例题讲解.docx
-
资源ID:432159
资源大小:14.30KB
全文页数:3页
- 资源格式: DOCX
下载积分:3金币
快捷下载

账号登录下载
微信登录下载
三方登录下载:
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
应用题鸡兔同笼问题五种基本公式和例题讲解.docx
鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数X总头数)÷(每只兔的脚数-每只鸡的脚数)二兔数;总头数-兔数二鸡数。或者是(每只兔脚数X总头数-总脚数)÷(每只兔脚数-每只鸡脚数)二鸡数;总头数-鸡数二兔数。例如,“有鸡、兔共36只,它们共有脚IOO只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)兔;36-14=22(只)鸡。解二(4×36-100)÷(4-2)=22(只)鸡;36-22=14(只)兔。(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数义总头数一脚数之差)÷(每只鸡的脚数+每只兔的脚数)二兔数;总头数-兔数二鸡数或(每只兔脚数X总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)二鸡数;总头数-鸡数二兔数。(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。(每只鸡的脚数X总头数十鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)二兔数;总头数-兔数二鸡数。或(每只兔的脚数X总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)二鸡数;总头数-鸡数二兔数。(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数义产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)二不合格品数。或者是总产品数-(每只不合格品扣分数X总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)二不合格品数。例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了IOOO只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二IOOO-(15×1000+3525)÷(4÷15)=1000-18525÷19=IoOO-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费XX元,破损者不仅不给运费,还需要赔成本XX元。它的解法显然可套用上述公式。)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)2二鸡数;(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)÷2二兔数。例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”解(52+44)÷(4+2)+(52-44)÷(4-2)÷2=20+2=10(只)鸡(52+44)÷(4+2)-(52-44)÷(4-2)÷2=12÷2=6(只)兔(答略)