欢迎来到第一文库网! | 帮助中心 第一文库网-每个人都是第一
第一文库网
全部分类
  • 研究报告>
  • 学术论文>
  • 全科教育>
  • 应用文档>
  • 行业资料>
  • 企业管理>
  • 技术资料>
  • 生活休闲>
  • ImageVerifierCode 换一换
    首页 第一文库网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    小学四年级奥数第7课《几何中的计数问题1》试题附答案.docx

    • 资源ID:428652       资源大小:136.59KB        全文页数:17页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    扫码关注公众号登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    小学四年级奥数第7课《几何中的计数问题1》试题附答案.docx

    小学四年级上册数学奥数知识点讲解第7课几何中的计数问题1试题附答案第八讲几何中的计数问题(二)我们在已经学会数线段、数角、数三角形的基础上,通过本讲学习数长方形,正方形及数综合图形来进一步提高观察和思考问题的能力,学会在观察、思考、分析中总结归纳出解决问题的规律和方法.一、数长方形例1如下图,数一数下列各图中长方形的个数?c)rm)例2如右图数一数图中长方形的个数.二、数正方形例3数一数下页各个图中所有正方形的个数.(每个小方格为边长为1的正方形)田仲Ii母IIIIIIIV例4如右图,数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形).例5如下图,平面上有16个点,每个点上都钉上钉子,形成4X4的正方形钉阵,现有许多皮筋,问能套出多少个正方形.III三、数三角形例6如右图,数一数图中三角形的个数.例7页图数一数图中有多少个三角形.四、数综合图形前面我们己对较基本、简单的图形的数法作了较系统的研究,寻找到了一般规律.而对于较复杂的图形即综合图形的数法,我们仍需遵循不重复、不遗漏的原则,采用能按规律数的,按规律数,能按分类数的就按分类数,或者两者结合起来就一定能把图形数清楚了.例7页图,数一数图中一共有多少个三角形.分析图中有若干个大小不同、形状各异但有规律的三角形.因此适合分类来数.首先要找出三角形的不同的种类?每种相同的三角形各有多少个?A例8图,数一数图中一共有多少个三角形?分析这是个对称图形,我们可按如下三步顺序来数:答案第八讲几何中的计数问题(二)我们在己经学会数线段、数角、数三角形的基础上,通过本讲学习数长方形,正方形及数综合图形来进一步提高观察和思考问题的能力,学会在观察、思考、分析中总结归纳出解决问题的规律和方法.一、数长方形例1如下图,数一数下列各图中长方形的个数?C1)()分析图(I)中长方形的个数与AB边上所分成的线段的条数有关,每一条线段对应一个长方形,所以长方形的个数等于AB边上线段的条数,即长方形个数为:4+3+2+1=10(个).图(II)中AB边上共有线段4+3+2+1=10条.BC边上共有线段:2+1=3(条),把AB上的每一条线段作为长,BC边上每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以图(II)中共有长方形为:(4+3+2+1)×(2+1)=10×3=30(个).图(In)中,依据计算图(II)中长方形个数的方法:可得长方形个数为:(4+3+2+1)X(3+2+1)=60(个),解:图(I)中长方形个数为4+3+2+1=10(个),图(H)中长方形个数为:(4+3+2+1)X(2+1)=10×3=30(个).图Qn)中长方形个数为:小结:一般情况下,如果有类似图In的任一个长方形一边上有n-1个分点(不包括这条边的两个端点),另一边上有m-1个分点(不包括这条边上的两个端点),通过这些点分别作时边的平行线且与另一边相交,这两组平行线将长方形分为许多长方形,这时长方形的总数为:(1+2+3+m)×(1+2+3+n).例2如右图数一数图中长方形的个数.解:AB边上分成的线段有:5+4+3+2+1=15.BC边上分成的线段有:3+2+1=6.所以共有长方形:(5+4+3+2+1)X(3+2+1)=15×6=90(个).二、数正方形例3数一数下页各个图中所有正方形的个数.(每个小方格为边长为1的正方形)分析图I中,边长为1个长度单位的正方形有:2×2=4(个),边长为2个长度单位的正方形有:IIIIII1×1=1(个).IV所以,正方形总数为IX1+2x2=1+4=5(个).图中,边长为1个长度单位的正方形有3X3=9(个);边长为2个长度单位的正方形有:2×2=4(个);边长为3个长度单位的正方形有IX1=I(个).所以,正方形的总数为:1X1+2X2+3X3=14(个).图HI中,边长为1个长度单位的正方形有:4×4=16(个);边长为2个长度单位的正方形有:3×3=9(个);边长为3个长度单位的正方形有:2×2=4(个);边长为4个长度单位的正方形有:IX1n(个);所以,正方形的总数为:1×1+2×2+3×3+4×4=30(个).图IV中,边长为1个长度单位的正方形有:5X5=25(个)?边长为2个长度单位的正方形有:4×4=16(个);边长为3个长度单位的正方形有:3×3=9(个);边长为4个长度单位的正方形有:2X2=4(个);边长为5个长度单位的正方形有:1X1=1(个),所有正方形个数为:IX1+2X2+3X3+4X4+5X5=55(个).小结:一般地,如果类似图W中,一个大正方形的边长是n个长度单位,那么其中边长为1个长度单位的正方形个数有:nX"n2(个),边长为2个长度单位的正方形个数有:(n-1)×(n-1)=(n-1)2(个);边长为(-1)个长度单位的正方形个数有:2X2=22(个),边长为n个长度单位的正方形个数有:IX1n(个).所以,这个大正方形内所有正方形总数为:12+22+32+n2(个).例4如右图,数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形).分析为叙述方便,我们规定最小正方形的边长为1个长度单位,又称为基本线段,图中共有五类正方形.以一条基本线段为边的正方形个数共有:6X5=30(个),以二条基本线段为边的正方形个数共有:5×4=20(个).以三条基本线段为边的正方形个数共有:4×3=12(个).以四条基本线段为边的正方形个数共有:3×2=(个).以五条基本线段为边的正方形个数共有:2×1=2(个).所以,正方形总数为:6×5+5×4÷4×3+3×2+2×1=30+20+12+6+2=70(个).小结:一般情况下,若一长方形的长被分成得份,宽被分成n等份,(长和宽上的每一份是相等的)那么定为形的总装为(n<m):Inn+(InTj(n-1)+(in-2)(n-2)+(In-n+1)1显然例4是结论的特殊情况.例5如下图,平面上有16个点,每个点上都钉上钉子,形成4X4的正方形钉阵,现有许多皮筋,问能套出多少个正方形.分析这个问题与前面数正方形的个数是不同的,因为正方形的边不是先画好的,而是要我们去确定的,所以如何确定正方形的边长及顶点,这是我们首先要思考的问题.很明显,我们能围成上图I那样正向正方形14个,除此之外我们还能围出图那样斜向正方形4个,图In那样斜向正方形2个.但我们不可能再围出比它们更小或更大的斜向正方形,所以斜向正方形一共有4+2二6个,总共可以围出正方形有:14+6=20(个).我们把上述结果列表分析可知,对于nXn个顶点,顶点个数2×23X34X45X5正向正方形个数151430斜向正方形个数O1620正方形总数162050可作出斜向正方形的个数恰好等于(n-1)×(n-1)个顶点时的所有正方形的总数.三、数三角形例6如右图,数一数图中三角形的个数.分析这样的图形只能分类数,可以采用类似数正方形的方法,从边长为一条基本线段的最小三角形开始.I.以一条基本线段为边的三角形:尖朝上的三角形共有四层,它们的总数为:W上=1+2+3+4=10(个),尖朝下的三角形共有三层,它们的总数为:W下二1+2+3=6(个).II.以两条基本线段为边的三角形:尖朝上的三角形共有三层,它们的总数为:W上=1+2+3=6(个).尖朝下的三角形只有一个,记为W下二1(个),In,以三条基本线段为边的三角形:尖朝上的三角形共有二层,它们的总数为:W上=1+2=3(个).尖朝下的三角形零个,记为W下二0(个),IV,以四条基本线段为边的三角形,只有一个,记为:W上二1(个).所以三角形的总数是10+6+6+1+3+1=27(个).我们还可以按另一种分类情况计算三角形的个数,即按尖朝上与尖朝下的三角形的两种分类情况计算三角形个数.I.尖朝上的三角形共有四种:W下二1+2+3+4=10W上二1+2+3=6W上二1+2=3W上二1所以尖朝上的三角形共有:10+6+3+1=20(个).尖朝下的三角形共有二种:W下二1+2+3=6W下二1W下二0W下二O则尖朝下的三角形共有:6+1+0+0=7(个)所以,尖朝上与尖朝下的三角形一共有:20+7=27(个).小结:尖朝上的三角形共有四种.每一种尖朝上的三角形个数都是由1开始的连续自然数的和,其中连续自然数最多的和中最大的加数就是三角形每边被分成的基本线段的条数,依次各个连续自然数的和都比上一次少一个最大的加数,直到1为止.尖朝下的三角形的个数也是从1开始的连续自然数的和,它的第一个和恰是尖朝上的第二个和,依次各个和都比上一个和少最大的两个加数,以此类推直到零为止.例7页图数一数图中有多少个三角形.解:参考例6所总结的规律把图中三角形分成尖朝上和尖朝下的两类:I.尖朝上的三角形有五种:(1)(2) W上=8+7+6+5+4=30(3) W上=7+6+5+4=22(4) W上二6+5+4=15(4)W上二5+4=9(5)W上二4,尖朝上的三角形共有:30+22+15+9+4=80(个),尖朝下的三角形有四种:(1) W下二3+4+5+6+7=25(2) W下=2+3+4+5=14(3) W下二1+2+3=6(4) W下二1尖朝下的三角形共有25+14+6+1=46(个).所以尖朝上与尖朝下的三角形总共有80+46=126(个).四、数综合图形前面我们己对较基本、简单的图形的数法作了较系统的研究,寻找到了一般规律.而对于较复杂的图形即综合图形的数法,我们仍需遵循不重复、不遗漏的原则,采用能按规律数的,按规律数,能按分类数的就按分类数,或者两者结合起来就一定能把图形数清楚了.例7页图,数一数图中一共有多少个三角形.分析图中有若干个大小不同、形状各异但有规律的三角形.因此适合分类来数.首先要找出三角形的不同的种类?每种相同的三角形各有多少个?解:根据图中三角形的形状和大小分为六类:I .与AABE相同的三角形共有5个;II .与Aabp相同的三角形共有io个;III .与Aabf相同的三角形共有5个;IV .与AAFP相同的三角形共有5个;V .与AACD相同的三角形共有5个;VI .与Aagd相同的三角形共有5个.所以图中共有三角形为5+10+5+5+5+5=35(个).例8图,数一数图中一共有多少个三角形?分析这是个对称图形,我们可按如下三步顺序来数:第一步:大矩形ABCD可分为四个相同的小矩形:AEOH.EBF0、OFCG.HOGD,每个小矩形内所包含的三角形个数是相同的.第二步:每两个小矩形组合成的图形共有四个,如:ABFH.EBCG.HFCD.AEGD,每一个这样的图形中所包含的三角形个数是相同的.第三步:每三个小矩形占据的部分

    注意事项

    本文(小学四年级奥数第7课《几何中的计数问题1》试题附答案.docx)为本站会员(lao****ou)主动上传,第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第一文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2022 001doc.com网站版权所有   

    经营许可证编号:宁ICP备2022001085号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



    收起
    展开