欢迎来到第一文库网! | 帮助中心 第一文库网-每个人都是第一
第一文库网
全部分类
  • 研究报告>
  • 学术论文>
  • 全科教育>
  • 应用文档>
  • 行业资料>
  • 企业管理>
  • 技术资料>
  • 生活休闲>
  • ImageVerifierCode 换一换
    首页 第一文库网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    331 从函数观点看一元二次方程.docx

    • 资源ID:255865       资源大小:51.22KB        全文页数:10页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    扫码关注公众号登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    331 从函数观点看一元二次方程.docx

    3.3从函数观点看一元二次方程和一元二次不等式3.3.1从函数观点看一元二次方程课标要求素养要求1 .了解一元二次方程的根与二次函数零点的关系.2 .会用函数的图象判断一元二次方程的根的情况.通过用二次函数的图象判断一元二次方程的根的情况,提升直观想象素养、逻辑推理素养.课前预习知识探究自主梳理1 .二次函数的零点一般地,一元二次方程G2+v+c=O(WO)的根就是二次函数y=c-bx+c(aWO)当函数值取零时自变量X的值,即二次函数y=0x2+加+c(O)的图象与x轴交点的横坐标,也称为二次函数y=0?+云+c(a¥O)的零点.2.二次函数的图象、一元二次方程的根与二次函数的零点之间的关系(当。0时)判别式/=b2-4acJ>0/=0J<0方程ax2+bx+c=O的根有两个相异实根处.2=-b±b2-4ac2a两相等实数沏=及b一-五没有实根二次函数y=0x2+bx+c的图象/二次函数y=?+bx+c的零点有两个零点XI.2=一?N-24CIa有一个零点X1=X2=_h_2a无零点。点游二次函数的零点与一元二次方程有何关系?零点是个点吗?二次函数的零点即对应一元二次方程的根,也是函数图象与%轴交点的横坐标.零点不是点,是一个实数,当函数的自变量取这个实数时,其函数值为零.自主检验2 .思考辨析,判断正误(1)二次函数的零点是图象与X轴的交点.(X)提示零点不是点,是图象与X轴交点的横坐标.二次函数尸以2+法+«#0)一定有零点.(X)提示当/=-4。CyO时,没有零点.(3)二次函数y=0x2+bx+c(40)的零点即为对应方程ax2+bx+c=0的根.()(4)二次函数段)=2-3x+1的零点是1ff.()3 .函数j=2+x+3的零点个数是()A.0B.1C.2D.3答案A解析由f+x+3=0得/=1-12<0,方程没有实数根,从而函数没有零点.4 .函数y=2x2-5x+2的零点是()A.(2,0),(:,0)B.(-2,0),(-今()C.2,2D.-2,-2答案C解析由2-5x+2=0得x=2,及=/且零点不是点的坐标.4.若一元二次方程f一以+2&=0有实数根,则k的取值范围是.答案(一8,2解析由4=168220,得欠W2.课堂互动F-题型剖析题型一二次函数零点的判断【例1】判断下列函数是否存在零点,若存在,求出零点.(1)y=x2+2x+3.(2)y=x1-6.(3)y=2x2+3x+2.解(1)由y=-f+2x+3=0,得无I=-1,X2=3. ,二次函数y=-f+2x+3有两个零点一1和3.(2)由y=jcX6=0得X1=-2,冷=3.,二次函数y=2-X6有两个零点一2和3.(3)由2x2+3x+2=0得=9-4X2X2=-7<0. 方程没有实数根,二次函数y=2x2+3x+2没有零点.思维升华二次函数的零点就是相应一元二次方程的实数根,判断是否有零点,即用=U-4c判断一元二次方程的根的情况,解一元二次方程得函数的零点.也可画出函数的图象,图象与X轴的交点的横坐标即为函数零点.【训练1判断下列函数零点的个数.(1)y=-7x+12.(2)y=xz+1.(3)y=3x2+6x+3.解(1)由y=0,即x27x+12=0,得/=494X12=1>0,二方程f-7x+12=0有两个不等实根,,函数有两个零点.(2)由f+1=0得/=4<0,即方程无实根,函数有0个零点.(3)由y=0,即3x2+6x+3=0,T=36-4X3X3=0, 方程3x2+6x+3=0有一个实数根,函数有一个零点.题型二函数零点与参数的值【例2】若函数y=x2+-的一个零点是一3,求实数。的值,并求函数y=x2+-其余的零点.解由题意知yk=-3=0,即(3)23=0,。=6,y=2+-6.解方程x2÷-6=0,得工=-3或2".函数其余的零点是2.思维升华由函数的零点(方程的根)求参数的取值时,由条件构建关于参数的关系式;解关系式求参数值;结合一元二次方程根的判别式/=-4c及根与系数的关系列式求解.【训练2】(1)已知函数y=x2-0r+Z?有两个零点,则函数理=一加+以一1的零点个数为.(2)若函数y=-H力的两个零点是2和3,则函数”=云2一这一1的零点是答案(1)1或2(2)B解析(1)函数y=x2-ax-b有两个零点,即方程x2-a-b=O有两个不相等的实数根,或函数y=x2-ax+b的图象与x轴有两个不同的交点,因而Ji=2-4Z?>0.对于函数=-bx2+0-1,当b=0,a0时,y2=-bx2+a-1只有1个零点;当b0时,由于42=。24/>0,因而y2=-bx1+a-有2个零点.综上,函数”=-bx2+r-1的零点个数为1或2.(2)由2和3是函数的零点,故2+3=,2×3=b,/.=5,b=6,则以=6f5-的零点为1,一4.题型三一元二次方程根的分布【例3】已知一元二次方程X2+如+1=0的两根都在(0,2)内,求实数机的取值范围.解设y=x2+加x+1,J=n2-40,o=1>O,由题意知j"=2=4+2w+1>0,C机0<一<2,IZ(nzW2或加22,J55Sn>-2,2<aw-2.4<<0, 实数加的取值范围为(一|,-2.思维升华解决一元二次方程根的分布问题应注意(1)可转化为函数问题,要画出符合题意的草图.(2)结合二次函数草图考虑四个方面;/的大小;对称轴与所给端点值的关系;开口方向;端点处的函数值与零的关系.(3)列出不等式(组),要验证图象是否符合.(4)若看根的正负问题,可利用根与系数的关系及根的判别式列不等式求解.【训练3】(1)若函数y=x1+(-m)x+m-2的一个零点大于0,另一个零点小于0,则实数机的取值范围是.(2)若关于X的方程42+(-2)x+m-5=0的一根在区间(-1,0)内,另一根在区间(0,2)内,则实数团的取值范围是()A.(|,5)B.(一看5)C.(-8,翥U(5,+)D.(-8,§答案(1)(-8,2)(2)B解析(1)由题意知方程x2÷(1-)÷w-2=0有两个异号的实数根.=n)2-4(n-2)>0,xX2=-2<0,即m<2.(2)设y=4x2+(n-2)x+n-5,依题意得出函数«r)的图象与x'II轴的交点分别在区间(一1,0)和(0,2)内.画出函数的大致图象如图所示.-ix¾7:,儿=>0,=0<0,yh=2>0,(4(加2)+z5>0,即加一5<0,116+2Ctn2)+w5>0,解得一g<m<5,故选B.课堂小结1 .掌握1个概念函数的零点二次函数y=0r2+历:+c(0)的零点就是方程),=0的实数根,也就是二次函数y=0x2+Zzx+c(W0)的图象与x轴交点的横坐标,所以函数的零点是一个数而不是一个点,在写函数零点时,所写的一定是一个数,而不是一个坐标.2 .提升1个素养数形结合结合二次函数图象理解一元二次方程的根与函数的零点的关系.分层训练r素养提升一I基础达标I一、选择题1 .函数y=-f+x+2的零点个数是()A.OB.1C.2D.3答案C解析由-f+x+2=0得/=1+8=9>0,,方程有两个实根,即函数有两个零点.2.已知关于X的方程fr+3=O的一个根大于1,另一个根小于1,则实数。的取值范围是()A.(4,÷o°)B.(8,4)C.(一8,2)D.(2,+8)答案A解析Y关于r的方程f-0r+3=O的一个根大于1,另一个根小于1,;令y=x2-or+3,其图象开口向上,只需见=1-。+3=4<0,得4>4.故选A.3 .若二次函数y=x2+2x+1(Wo)有一个正零点和一个负零点,则有()A.<0B.a>0C.a<1D.a>答案A解析法一由y=公2+2x+1(0)的图象过(0,1)点,知要使函数的图象与X轴的交点分别在y轴的左、右两侧,则<0.法二由方程加+2x+1=0有两相异号实根,设两根为X2,则汨k宗0,且/=4-4X),d<O.4 .若关于X的方程Or2+Zzx+c=0(4z0)有两个实根1,2,则函数y=cx2+bx+a的零点为()A.1,2B.-1,-2C.1,D.-1,答案C解析.1和2是0r2+Zr+c=O的两根,则y=cx2+bx+="(%+1+1)=(2x2-3x+1)=4(-1)(2%1),故零点为1,12,5 .若二次函数y=0r2+Z;+CmWO)满足yh=0,且>b>c,则该函数的零点个数为()A.1B.2C.0D.不能确定答案B解析由yk=+b+c=O,又a>b>c,.,4>0,c、vO,/=/4仇>0,函数的零点有2个.二、填空题6 .函数y=x1-nvc-2的一个零点是一1,则m=,另一个零点是答案12解析由yh=-=1+"-2=0得m=1,.*.y=x2X2,由X2X2=0得汨=-1或A:2=2.7 .已知函数y=r2+2ar+c3H0)的一个零点为1,则它的另一个零点为答案一3解析由题意知x2+2or+c=0的一个根为1,设另一根为Xo.则1+xo=-2,*.xo=3.8 .函数y=f-5-6在区间1,4上的零点个数是.答案0解析由f5x6=0得X1=-1,及=6.即函数的零点是一1,6,.函数在区间口,4上的零点个数为0.三、解答题9 .已知二次函数y=x2x+只有一个零点,求实数。的值.解二次函数y=-f-+只有一个零点,即方程一f-+=O有两个相等的实数根,.*.J=1+4=0./.a=10 .已知函数y=v2+20r+1有两个零点X1,jq且幻£(0,1),X2(-4,2),求实数。的取值范围.解Vy=0r2+20r+1有两个零点,则函数的图象过(0,1)且与X轴有两个交点,"<0,又加£(0,1),X2(-4,2),yx=3o+1<0,yh=-2=1>0,、必=-4=8+1<0,/.6z<-,即。的取值范围是(一8,一;).能力提升I1若函数y=加一2(+1)x+。-1有且仅有一个零点,则实数a=答案0或一!解析当=0时,由y=0得一2x1=0,即x=-今符合题意;当白0时,加一23+1江+。-I=O为一元二次方程,且有两个相等的实数根,.=4(q+Ip4a(。-1)=12+4=0,=-g.综上,实数。的值为。或一/12.在R上定义运算。:aQb=ab+2a+b,则y=xO(-2)的零点为()A.0和2B.-2和1C.一1和2D.-2和0答案B解析由题意y=x(x-2)+2x+(-

    注意事项

    本文(331 从函数观点看一元二次方程.docx)为本站会员(lao****ou)主动上传,第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第一文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2022 001doc.com网站版权所有   

    经营许可证编号:宁ICP备2022001085号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



    收起
    展开