极限的概念和性质试卷.docx
极限的概念和性质2 (2014, 4分)设Iim%=,且q0,则当充分大时有 m(A) ¾ >y(B) ¾<y(C) an >a-(D) an<a + nn3 (2015, 4分)设%是数列,下列命题中不正确的是(A) limxn =a,贝U limx2n = limx2n+1 = a . mnfn(B) 若 IimX2 = limx2n+1 =a,贝U limxn = a. n-xonnf(C) 若limxn =a,贝!j Iimn = lim3+1 = a . n nn(D) 若IimA3" = IinIA3"+ =" ,贝!imx,=". nOOn1 (2017, 4分)设数列%收敛,则(A) IimSinAh=O时,Iimxn =0. n-÷n(B)当 IimL= 0时,Iimxn =0.(C)当 Cm(X+%;) = 0 时,Iimxn =0.(D)当 Iim(J+sin%) = O 时,Iimxzi=O.求函数的极限7 (2012,4 分)lim(tanx)SX-SinXx-48 (2012,'z7rcs1。分)求极限理上一1/八、 (ln(l + x)V5 (2013, 4 分)Iim 2-L=.0 XJr 1、 一(2014,Jl10分)求极限Iim +产 cr-l t tmi2 (2014,4分)设函数/(x) = arctanx.若/(%) = '(j),则 Ii呼F(A) 1.(B)t-(C)2(D)-3(2015,4分)In(CoSX)Iim v - 7 x0 j(2016,4分)Iim xQJ。/In(q +ZLSinZL)drI-COSx2(206, 10 分)求极限Ii邛(COS2x+2XSinXy .11 (2016, 4 分)已知函数/(x)满足 IimJI+ /(?sm2x l =2,则 H1(X) =8 (2017, 10 分)求 Iimx0+9 (2018, 4 分)Iimx2 arctan (x + l)- arctan %=210 (2019, 4 分)1 吗(x + 2XF=.x06 (2020, 4 分)Iim 工-z 、 ex ln(l + x)14 2。,4 分)设 Iim则 IimSin 小)TinjXfa X-aXTa X-a(A) bsina.(B) bcosa.(C) Asin"4).(D) Z?cos/(6i).求数列的极限12 (2012, 4 分)设为0 5=1, 2.),5n=¾+¾+ +¾,则数列S 有界是数列 %收敛的(B)充分非必要条件.(D)既非充分也非必要条件.(A)充分必要条件.(C)必要非充分条件.14 (2012, 4 分)IimMI7 + y +7l=-x 11 + 12 +IT +rr)15 (2013, 分)设函数/(x) = InX+ L(I)求/(x)的最小值;(II)设数列%满足ln%+'<l,证明IimZ存在,并求此极限 In%+116(2014, 分)设函数/(X)= 怖,x0,l,定义函数列:工(X) =/(%),力(X) = 4(X),,力(X) =T(X),记S是由曲线y =力(X),直线X = I及X轴所围平面图形的面积,求极限Iim17 (2016, 4 分)极限Iime(Sin + 2sin2+ +sin- =.n n n Yin J16 (2017,10分)求IimZ与In17 (2018, 10分)设数列%满足:玉0,%e""+ =e% 1 (几=L 2).证明/收敛,并 求 IimXzl.18 (2019, 4 分)Iim + + +Jx n12 23 ( + l)19 (2019, 10 分)¾ = xnl-x2dx (ZI=0, L 2).n 1(I)证明:数列4单调减少,且4=K一%一2 5=2, 3,).(II)求 Iimj%确定极限中的参数11 (2013,4分)已知极限Iim二竺=。,其中VC为常数,且c0,则x0Xk(A) k=2,C = -L(B)k=2, c122'(C) =3,C-.(D)k=3, c13321 (2013, 10分)当0时,I-COS光cos2xcos3光与Or为等价无穷小,求与Q的值.12 (2018, 4 分)¾Iimf1 -tanxVm = e,贝U 仁.o(l +tanx )22 (2018, 10 分)已知实数,方满足 Iim (ax + bcx -x = 2 ,求 , b. V-l-J20 (2018, 4 分)lim(ex + ax1 + bx =1,贝U(A) a , b = -l.(B) a = , b = -l.22(C) a = f b = l.(D) a = , b = l.2223 (2019, 4分)当XfO时,若尤-tan%与/是同阶无穷小,则=(A) 1.(B) 2.(C) 3.(D) 4.无穷小量及其阶的比较I-Ly 123 (2012, 10 分)已知函数/(= ,记Q = Iim/(x).sin X X"-(I)求的值;(H)若当XfO时,与/是同阶无穷小,求常数上的值.24 (2013, 4 分)设 CoSjr-1 = Sinq(X),其中 IQ(X)I<£,则当 0 时,(x)是(A)比X高阶的无穷小.(B)比X低阶的无穷小。(C)与%同阶但不等价的无穷小.(D)与%等价的无穷小.25 (2013, IO分)当40时,I-COS光cos2xcos3光与Or"为等价无穷小,求九与Q的值.126 (2014, 4分)当x-0+时,若ln"(l + 2x), (I-COSX)Z均是比X高阶的无穷小,则的取值范围是(A) (2, +) .(B) (1, 2).(C)(D)27 (2014, 4分)设MX) = o + Zzx + c/+办;3.当Xfo时,若P(X) tanx是比4,高阶的无穷小,则下列选项中错误的是(A) a = l.(B) b = l.(C) c = l.(D) d=.627 (2015, 10 分)设函数/(x) = % + 1ln(l + %)Xsinx , g(x) = Ax3,若X)与 g(x)在冗一0时是等价无穷小,求。,b,左的值.28 (2016, 4 分)设/=IX(COS6一1), %=«ln(l +狐),6¾ =正工1一1.当 x-0小时,以 上3个无穷小量按照从低阶到高阶的排序是(A) ai, a2, a3. (B) % % %.(C) a2, ai, a3 (D) % a2, 4.29 (2019, 4分)当10时,若x-tanx与/是同阶无穷小,则仁(A) 1.(B) 2.(C) 3.(D) 4.30 (2020, 4分)当1-0+时,下列无穷小量中最高阶是(A) v(er2 -l)d(B) JJn(I+ ").(C) %inr2.(D) L标此Jo29 (2020, 10分)已知,为常数,若1 +工-e与2在川oo时是等价无穷小,求I nJ nab.函数的连续性及间断点类型31 (2013,4分)函数/(X)=时-1x(x + l)lnx的可去间断点的个数为(A) 0.(B) 1.(C) 2.(D) 3.33 (2015,4分)函数/(x) = IiiM1 +包吆)在(-, + )内(A)连续.(C)有跳跃间断点.(B)有可去间断点.(D)有无穷间断点.羽15 (2016, 4 分)已知函数/(x) = hx0,11< X , 1,2, n + 1n(A) x = 0是/(x)的第一类间断点.(B) % = 0是/(x)的第二类间断点.(C) /(x)在X = O处连续但不可导.(D) 在X = O处可导.1-cos Tx 、八34 (2017, 4分)若函数/(x) = 一瓦一'%> '在无=0处连续,则b,x 0(A) ab-.(B) ab = -.(C) ab O.(D) Ob = 22235 (2018, 4 分)高函数/") =2 - ax, X -1,=< x, -l<%<0,若/(x) + g(x)在 R 上 x-b, % 0.连续,则(A) a = 3,b = l.(B) a = 3,b = 2.(C) a = 3, b = l. (D) a = -3,b = 2.15 (2020, 4分)函数/() = /e号+ '、的第二类间断点的个数为(A) 1.(B) 2.(C) 3.(D) 4.导数与微分的概念2 (2015, 4 分)设函数/(X) =/"os歹,x>0?(a >,y0>),若 Jra)在光=0处连续,则0,x0(A) a->Q. (B) 0<a-<0.(C) a->2.(D) Q<a-<2.1 (2015, 10分)(I)设函数(x), V(X)可导,利用导数定义证明M%)v(%) = u, (x) V (x) + U (x) v,(X)(II)设函数1(尤),Vl(X),,%(X)可导,/(x) = w1(x)wn(x) un (%),写出 X)的求 导公式.2 (2018, 4分)下列函数中,在尤=0处不可导的是(A) /(x) = xsinx.(B) /(x) = WSinAj.(C) /(x) = cosx(D) /(x) = cos5x.3 (2020, 4分)设函数在区间(-1, 1)内有定义,且1哩/(x) = 0,则 (A)当Iim4 = 0, /(x)在无=0处可导.(B)当吗/(:)=。, /(x)在X = O处可导.(C)当尤)在X = O处可导时,Iim= 0.(D)当/(%)在 Jr = O 处可导时,Iim":)= 0 .导数与微分的计算5 (2012, 4 分)设函数/(%) = .-1)."-2)(en"-n),其中为正整数,则