教案实际问题与一元一次不等式.docx
教案实际问题与一元一次不等式以下是查字典数学网为您推荐的教案实际问题与一元一次不等式,希望本篇文章对您学习有所帮助。实际问题与一元一次不等式教学目标:1 .会解一元一次不等式.2 .会用不等式来表示实际问题中的不等关系.教学重点、难点:教学过程:复习提问:解一元一次不等式的一般步骤是什么?新课:例1解不等式3(1-)2(x+9),并把它的解集在数轴上表示 出来.解:去括号,得3-3x2x+18移项,得-3-2x18-3合并,得-5x 15系数化成1 ,得X -3这个不等式的解集在数轴上表示如下:归纳:解一元一次方程,要根据等式的性质,将方程 逐步化为x=a的形式;而解一元一次不等式,那么要根 据不等式的性 质,将不等式逐步化为X练习:P140练习1、2例2 2019年北京空气质量良好(二级以上)的天数与全年天 数之比到达55% ,如果到2019年这样的比值要超过70% ,那 么2019年空气质量良好的天数要比2019年至少增加多少?讨论2019年北京空气质量良好的天数是多少?用X表示 2019年增加的空气质量良好的天数,那么2019年北京空气 质量良好的天数是多少?与X有关的哪个式子的值应超过70%? 这个式子表示什么?例3某次知识竞赛共有20道题,每一题答对得10分,答 错或不答都扣5分.小明得分要超过90分,他至少要答 对 多少道题?练习:P140-3P141-5. 6作业:P141习题9.27、8、99. 2实际问题 与一元一次不等式(二)教学目标:1 .会解一元一次不等式.2 .会用不等式来表示实际问题中的不等关系教学重点、难点:教学过程:新课:例甲、乙两商店以同样价格出售同样的商品,并且又各自 推出不同的优惠方案:在甲店累计购置100元商品后,再购 置的商品按原价的90%收费;在乙店累计购置50元商品后, 再购置的商品按原价的95%收费.顾客怎样选择商店购物能 获得更大优惠?这个问题较复杂,从何处入后考虑它呢?甲商店优 惠方案的起点为购物款达一元后; 乙商店优惠方案的起点为购物款过一元后. 我们是否应分情况考虑?可以怎样分情况呢? (1)如果累计购物不超过50元,那么在两店购物花费有区 别吗?(2)如果累计购物超过50元而不超过100元,那么在哪家商 店购物花费小?为什么?(3)如果累计购物超过100元,那么在甲店购物花费小吗? 练习:1 .某校校长暑假将带着该校市级优秀学生乘旅行社的车去 A市参加科技夏令营,甲旅行社说:如果校长买全票一张, 那么其余学生可享受半价优 惠.乙旅行社说:包括校长在内 全部按全票的6折优惠,假设全票价为240元.(1)设学生数为X ,甲旅行社收费为y甲,乙旅行社收费为y 乙.分别计算两家旅行社的收费(建 立表达式);(2)当学生数是多少时,两家旅行社的收费一样?(3)就学生数X讨论哪家旅行社更优惠.2 .某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元, 该商店有两种优惠方法:(1)买一只茶壶送一只茶杯;(2)按总价的92%付款.现有一顾客需购置4只茶壶,茶杯假 设干只(不少于4只).请问:顾客买同样多的茶杯时,用哪一种优惠方法购置省钱? 3.某人的移动()可选择两种收费方法中的一种,甲种 收费方法是,先交月租费50元,每通一次 再收费0. 40元; 乙种收费方法是,不交月租费,每通一次收 费0.60元.问每月通话次数在什么范围内选择甲种收费方法适宜?在什么 范围内时选择乙种收费方法适宜?补充练习:1 .有一批货物,如月初售出,可获利1000元,并可将本利之 和再去投资,到月末获1.5%的利息;如 月末售出这批货,可 获利1200元,但要付50元保管费.问这批货在月初还是月末 售出好.2 .某市自来水公司为限制单位用水,每月只给某单位方案内 用水3000吨,方案内用水每吨收费0.5元,超方案用水超出 局部每吨收费0. 8元.如果单位自建水泵房抽水,每月需交 500元管理费,另外每月一吨水再交0. 28元,每抽一吨水需本 钱0. 07元.问该单位是用自来水公司的水合算,还是自建水 泵房抽水合算.、