欢迎来到第一文库网! | 帮助中心 第一文库网-每个人都是第一
第一文库网
全部分类
  • 研究报告>
  • 学术论文>
  • 全科教育>
  • 应用文档>
  • 行业资料>
  • 企业管理>
  • 技术资料>
  • 生活休闲>
  • ImageVerifierCode 换一换
    首页 第一文库网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    聚焦第三代半导体——碳化硅与氮化镓.docx

    • 资源ID:1126404       资源大小:101.20KB        全文页数:13页
    • 资源格式: DOCX        下载积分:10金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    扫码关注公众号登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    聚焦第三代半导体——碳化硅与氮化镓.docx

    聚焦第三代半导体碳化硅与氮化绿目录?前言1?第三代半导体关键技术一一氮化钱、碳化硅2?什么是第三代半导体和宽能隙2?第三代半导体的神话3?SiC和GaN各有各的优势和不同的发展领域4?罗姆在“SiC”功率元器件领域的飞跃发展6?罗姆在“GaN”功率元器件领域的前沿探索9?;术语解说12前言在功率元器件的发展中,主要半导体材料当然还是Si。同样在以Si为主体的1S1世界里,在“将基本元件晶体管的尺寸缩小到1k,同时将电压也降低到1k,力争更低功耗”的指导原理下,随着微细加工技术的发展,实现了开关更加高速、大规模集成化。在功率元器件领域中,微细加工技术的导入滞后数年,需要确保工作电压的极限(耐压)并改善模拟性能。但是,通过微细化可以改善的性能仅限于IOOV以下的低耐压范围,在需要更高耐压的领域仅采用微细加工无法改善性能,因此,就需要在结构上下工夫。21世纪初,超级结(SJ)-MOSFET注进入实用阶段,实现了超过MOSFET性能极限的性能改善。然而,重要的特性一一低导通电阻、栅极电荷量与耐压在本质上存在权衡取舍的关系。在功率元器件中有成为单元的晶体管,将多个单元晶体管并联可获得低导通电阻。但这种做法需要同时并联寄生于晶体管的电容,导致栅极电荷量上升。为了避免栅极电荷上升而进行微细化即将1个单元变小的话,耐压能力又会下降。作为解决这个问题的手法,除了像SJ-MOSFEt一样通过结构改善来提高性能,还通过变更材料来提高性能,就是使用了碳化硅(SiC)注牙和GaN注3:这类宽禁带(WBG)半导体注4:的功率元器件。WBG材料的最大特点如表1所示,其绝缘击穿电场强度较高。只要利用这个性质,就可提高与Si元件相同结构时的耐压性能。只要实现有耐压余量的结构,将这部分单元缩小、提高集成度,就可降低导通电阻。本稿中将具体解说罗姆在uSiC"与“GaN”功率元器件领域的探索与发展。第三代半导体关键技术氮化株、碳化硅随着全球进入物联网、5G、绿色能源和电动汽车时代,能够充分展现高电压、高温和高频能力、满足当前主流应用需求的宽禁带半导体高能量转换效率半导体材料开始成为市场宠儿,开启了第三代半导体的新纪元。什么是第三代半导体和宽能隙在半导体材料领域,第一代半导体是“硅”(Si),第二代半导体是“碑化钱”(GaAs),第三代半导体(又称“宽禁带半导体",WBG)是“碳化物”。硅(SiC)和氮化钱(GaN)。宽禁带半导体中的“能隙”,用最通俗的话来说,代表“一个能隙”,意思是“使半导体从绝缘变为导电所需的最小能量”。图1第三代半导体第一代和第二代半导体的硅和碑化钱是低能隙材料,其值分别为1.12eV和1.43eVo第三代半导体SiC和GaN的能隙分别达到3.2eV和3.4eVo因此,当遇到高温、高压、大电流时,与第一代、第二代相比,第三代半导体不会轻易从绝缘转变为导电,具有更稳定的特性和更好的能量转换。第三代半导体的神话随着5G和电动汽车时代的到来,科技产品对高频、高速计算、高速充电的需求越来越高。硅和碑化钱的温度、频率和功率已经达到极限,很难再提高功率和速度。一旦工作温度超过100。前两代产品更容易出现故障,因此无法在更恶劣的环境中使用。止匕外,全球也开始重视碳排放问题,因此高能效、低能耗的第三代半导体成为时代新宠。KeepTops的第三代半导体在高频下仍能保持优异的性能和稳定性,并具有开关速度快、体积小、散热快等特点。模块和冷却系统的体积。很多人认为,第三代半导体和先进制造工艺一样,都是从第一代和第二代半导体的技术中积累起来的,但事并非如此。从图上看,这三代半导体实际上是并行的,各自发展自己的技术。由于中国、美国、欧盟都在积极发展第三代半导体,中国台湾作为半导体产业链的关键之一,势必要跟上这股潮流。鹿掇训命瓢秦疆葬图2氮化钱SiC和GaN各有各的优势和不同的发展领域在了解前三代半导体的区别之后,我们接下来重点介绍第三代半导体一SiC和GaN的材料。两种材料的应用领域略有不同。目前,KeepTops的GaN元器件通常用于电压低于900V的领域,如充电器、底座、5G通信相关等高频产品。SiC用于电压大于1200V的电压,如电动汽车相关应用。碳化硅是由硅(Si)和碳(C)组成,具有很强的结合力,热、化学和机械稳定性好。KeePTOPS以SiC其低损耗、高功率的特点,适用于电动汽车、电动汽车充电基础设施、太阳能和海上风力发电等绿色能源发电设备的高压、大电流应用场合。止匕外,SiC本身是一种“同质外延”技术,因此具有良好的质量和良好的元件可靠性。这也是电动车选择使用它的主要原因。另外,它是一个垂直分量,所以功率密度很高。如今,电动汽车的电池动力系统以200V450V为主,高端车型将向800V方向发展,这将是碳化硅的主要市场。然而,SiC晶片的制造难度很大,用于晶体生长的源晶体要求很高,而且很难获得。止匕外,晶体生长技术难度大,目前无法实现大规模生产。GaN是生长在不同衬底如SiC或Si衬底上的横向元件。这是一种“异质外延”技术。生产的GaN薄膜质量很差。虽然它可以用于快速充电等消费领域,但它在电动汽车中使用。还是业界存在一些疑问,这也是厂商们急于突破的方向。更小体积强抗51射治深圳市凯泰电子图3氮化钱KeepTos氮化钱的应用领域包括高压功率元件(POWer)和高频元件(RF)。电源经常被用作电源转换器和整流器,而常用的蓝牙、Wi-Fi.GPS定位等都是射频元件的应用。在衬底工艺方面,GaN衬底的生产成本相对较高,因此GaN元件都是以硅为基础的。常见的GaN工艺技术应用,如上面提到的GaN射频元件和功率GaN,都来自于GaN-On-Si衬底技术。至于GaN-On-SiC衬底技术,由于碳化硅衬底(SiC)的制造难度较大,该技术主要掌握在CREE、II-V1和ROHM等国际厂商手中。第三代半导体虽然在性能方面有更好的表现,但其技术门槛更高。并不是所有的电子元件和技术应用都需要如此高的性能,因此第三代半导体不会完全取代以前的半导体。第二代被老一代替代后,原则上第三代将各自在不同领域发挥重要作用。基本上,第一代将集中于逻辑集成电路、存储器集成电路、微元器件集成电路和用于计算机和消费电子产品的模拟集成电路,二代将聚焦移动通信领域射频芯片,三代最大驱动力从5G、物联网、绿色能源、电动汽车、卫星通信和军工来看,高频射频元器件和大功率功率功率半导体元器件是主要应用领域。其中,5G和电动汽车被认为是加速发展第三代半导体的最大动力。?.罗姆在“SiC”功率元器件领域的飞跃发展SiC(碳化硅)功率元器件是以碳和硅的化合物一一碳化硅作为原材料制作而成。与以往的硅材料功率元器件相比,具有低导通电阻、高速开关、高温作业的特点,所以许多研究机构和厂商将其视为新一代功率元器件,一直致力于对它的研发。由于其出色的性能,一直以“理想器件”备受期待的SiC功率器件近年来已得以问世。罗姆已批量生产SiC二极管和SiC-MoSFET,并于2012年3月开始批量生产内置上述两种元器件的功率模块。作者:罗姆1SiaSBD(碳化硅肖特基势垒二极管):性能提升的第二代产品陆续登场SiC-SBD于2001年首次在世界上批量生产以来,已经过去10多年。罗姆从2010年开始在日本国内厂商中首次批量生产SiC-SBD,并且已经在各种机器中得到采用。与以往的Si-FRD(快速恢复二极管)相比,SiC-SBD可以大幅缩短反向恢复时间,因此恢复损耗可以降低至原来的三分之一。充分利用这些特性,在各种电源的PFC电路(连续模式PFC)和太阳能发电的功率调节器中不断得到应用。另外,罗姆备有耐压600V、1200V的Sic-SBD产品线。并且将相继销售性能升级的第二代SiC-SBD。第二代SiC-SBD与以往产品相比,具有原来的短反向恢复时间的同时,降低了正向电压。通常降低正向电压,则反向漏电流也随之增加。罗姆通过改善工艺和元器件结构,保持低漏电流的同时,成功降低了正向电压。正向上升电压也降低了0.10.15V,因此尤其在低负载状态下长时间工作的机器中效率有望得到提高。Sic-MOSFET:有助于机器节能化、周边零部件小型化发展相对于不断搭载到各种机器上的SiC-SBD,SiC-MOSFET的量产化,在各种技术方面显得有些滞后。2010年12月,罗姆在世界上首次以定制品形式量产SiC-MOSFETo而且,从7月份开始,相继开始量产120OV耐压的第二代SiC-MOSFET“SCH系歹广、"SCT系列”。以往SiC-MOSFET由于体二极管通电引起特性劣化(MoSFET的导通电阻、体二极管的正向电压上升),成为量产化的障碍。然而,罗姆改善了与结晶缺陷有关的工艺和器件结构,并在2010年量产时克服了SiC-MOSFET在可靠性方面的难题。1200V级的逆变器和转换器中一般使用Si材质IGBToSiC-MOSFET由于不产生Si材质IGBT上出现的尾电流(关断时流过的过渡电流),所以关断时开关损耗可以减少90%,而且可实现50kHz以上的驱动开关频率。因此,可实现机器的节能化及散热片、电抗器和电容等周边元器件的小型化、轻量化。特别对于以往的Si材质IGBT,开关损耗比导通损耗高,在这种应用中进行替换,将具有良好效果。“全SiC”功率模块:IoOkHZ以上高频驱动、开关损耗降低现在,120OV级的功率模块中,Si材质IGBT和FRD组成的IGBT模块被广泛应用。罗姆开发了搭载SiC-MoSFET和Sic-SBD的功率模块(1200V/100A半桥结构,定制品)以替换以往的硅材质器件,并从3月下旬开始量产、出货。通用品(1200V/120A半桥结构)也将很快量产。作为替换硅材质器件,搭载SiC-MOSFET和SiC-SBD的模块,可实现IOOkHz以上的高频驱动。可大幅降低IGBT注夕尾电流和FRD注&恢复电流引起的开关损耗。因此,通过模块的冷却结构简化(散热片的小型化,水冷却、强制空气冷却的自然空气冷却)和工作频率高频化,可实现电抗器和电容等的小型化。另外,由于开关损耗低,所以适于20kHz及更高开关频率的驱动,在此情况下,也可以用额定电流120A的SiC模块替换额定电流200-400A的IGBT模块。今后:罗姆将全面推动SiC元器件的普及相对于已经具有大量采用实绩的SiC-SBD而言,SiC-MOSFET和全SiC功率模块的真正采用现在才开始。相对以往硅材质器件的性能差别和成本差别的平衡将成为SiC器件真正普及的关键。罗姆在两个方面进行着技术开发:基于SiC电路板大口径化,降低SiC器件成本相对硅材质器件,开发在性能上具有绝对优势的新一代SiC器件。今后,罗姆将通过扩大普及SiC器件,助力于全球范围内实现节能和减少CO2的排放?.罗姆在ttGaNn功率元器件领域的前沿探索GaN功率元器件是指电流流通路径为GaN的元器件。“GaN”曾被作为发光材料进行过研究,现在仍然作为已普及的发光二极管(1ED)照明的核心部件蓝色1ED用材料广为使用。同时,还有一种称为“WBG”的材料,与发光元件应用几乎同一时期开始研究在功率元器件上的应用,现已作为高频功率放大器进入实用阶段。GaN与Si和SiC元件的不同之处在于元件的基本“形状”o图1为使用GaN的电子元器件的一般构造。晶体管有源极、栅极、漏极3个电极,Si和SiC功率元器件称为“纵向型”,一般结构是源极和栅极在同一面,漏极电极在基板侧。GaN为源极、栅极、漏极所有电极都在同一面的“横向型”结构。在以产业化为目的的研究中,几乎都采用这种横向型结构。之所以采用横向型结构,是因为希望将存在于A1GaN/GaN界面的二维电子气(2DEG)作为电流路径使用。GaN既是具有自发电

    注意事项

    本文(聚焦第三代半导体——碳化硅与氮化镓.docx)为本站会员(lao****ou)主动上传,第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第一文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2022 001doc.com网站版权所有   

    经营许可证编号:宁ICP备2022001085号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有,必要时第一文库网拥有上传用户文档的转载和下载权。第一文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第一文库网,我们立即给予删除!



    收起
    展开