《第13讲 三大题型各有规律视角不同方法绝妙.docx》由会员分享,可在线阅读,更多相关《第13讲 三大题型各有规律视角不同方法绝妙.docx(7页珍藏版)》请在第一文库网上搜索。
1、第13讲三大题型各有规律,视角不同方法绝妙典型例题【例11已知0%6为函数/(X)=COS,.)的最小正周期,a=ftanfr+-1-1),b=(CoSa,2),且ab=/,求。,+sin2(”)的值4)CoSa-Sina【例2】求sin41Oo+sin450+sin470。的值.【例3】求证:2(SinX-COSX)IsinX+cosxsinxCosx1+cosI+sinx例4已知瓶2。=212112/?+1,求证凶112户=2sin2a-1强化训练451 .已知、/为锐角,tana=5,8s(+4)=三.求8S2a的值;(2)求tan(a-万)的值.2 .已知COSa+cos+cos=0,
2、Sina+sin+Siny=O,由此你能得出哪些结论?(至少写出三个);(2)已知Q,a2乃,cosa+cos+s7=0,Sina+sin6+siny=0,求夕一a的值.解答过程【例1已知OVatf乃)Iana+1Sina+cosa由题设知户=4,则tana+-=tana+=V4)V4)ITanaCOSa-Sina,11zucosa(sin+cosa)C由ab=,,得=m+2.COSa-Sina2cos2a+sin2a+)2cos2a+sin(2z+2)2cos2a+sin2a2cosa(cos+sina)_z_、=2(n+2)COSa-SinaCOSa-SinaCOSa-SinaCOSa-S
3、ina【例25410o+5z50o+5Z470o的值.【解析】【解法1】原式=sin2asin2+cos2acos29-(2cos2a一1)(2cos2一1)=sin2asin2+cos2acos2-g(4cos2acos2-2cos2a-2cos2尸+1)sin2asin2-cos2as2+cos2a+cos2=sin2crsin2/J-cos2a(CoS27-1jcos2=sin2asin2y9+cos2asin2+cos2=sin2(sin2a+cos2)+cos2/7-=sin2+cos2/一;=1-g=g【解法2】原式=Sin2asin2+(1-sin2a)cos2一;CoScos2
4、=cos2/7-sin2(cos27-sin2/7)-;cos2tzcos24=COS2一sin2cos2.-geoscos2力2(21cos*,-cos21sina+cos2a1+cos2?2-cos2sin?a+;1-2sin20)1+cos27122【解法3】rs-1-cos2a1-cos2j1+cos2a1+cos21CCC原式=-+二一一CoS勿cos222222=(1+cos2acos2-cos2a-cos2/y)+(1+cos2acos2?+s2a+cos2)441“1-cos2acos2p=【解法4】原式=(sinasin7-cosacos/7)2+2Sinasincosaco
5、sCOS2acos2?211=cos(a+?)+sin2asin2cos2acos2,I=cos(ct+)-cos(2a+2/7)=COS2(a+)-IX28s2(a+)-1=;【例3】求证Sinxcosx_2(Sinx-COSx)1+cosx1+sinx1+sinx+cosx【解析】sinx+sinx-cosx-cosx解法左边=(1+cosx)(1+snx)_(sinx-cosX)(Isinx+cosx)1+sinx+cosx+cosxsinJt_2(sinx-cosx)(1+sinx+cosx)1+sin2x+cos2x+2SinX+2CoSX+2COSXSinX_2(sinx-cosx
6、)(1+sinx+cosx)(1+sinx+cosx)2_2(SinX-COSX)右边1+sinxcosr:.所证等式成立.-F4、上1+sinx+cosxfsinxCOSX【解法2左边=;-1+snx+cos%11+cosx1+smx1sinx(1+sinx+cosx)cosx(1+sinx+cosx)=i1+sinx+cosx11+cosx1+sinx1sinxcosx=sinx+cosx1+sinx+cosx1+cosx1+sinx,=(sinx+1-cosx-cosx-1+sinx)1+sinx+cosx2(SinX-COSX)=后山1+sinx+sx.所证等式成立.【解法3】:上去1
7、sinXI-SinX_cosx+1-sinxcosx1+sinx+cosxsinx_1-cosx_sinx+1-cosx1cosxsinx1+sinx+cosxsinxcosxsinx+1-cosxsx+1-sinx2(SinX-COSX).=1+cosx1+sinx1+sinx+cosx1+sinx+cos-1+sinx+cosA,所证等式成立.例4已知4。=21曲2夕+1,求证:0也26=2sin2a-X【解析】(解法1】tan2a=2tan2+1,.tan2=(tan2a-1)=Sin夕=Sin,_2v7cos2I-Sin21(2sin01小2a-tana-?.1.dn2r_tan夕_2
8、、)_km-1cos?atan1i(tan2a-1)+11tanaj+sin2cos2asin2a-cos2a八.=一;=2sna-1sina+cos-【解法2】ta2=2tan2尸+1.+tan2=20+tan2)0cos2a+sin2a2(cos2/7+sin2/?)22BP=3Pcos=2cos2a.cos-acos2即I-Sin26=2(I-Sin2a),.si2/=2sin2a-1强化训练4JK1.已知、为锐角,tana=g,cos(+4)=-.求8s2a的值;(2)求tan(a-6)的值.【解析】小回、4,w,4Sina47.221.21629(1)【解法1】:tan=,又Snra
9、+cos=1.sina-一,cosa=-,3CoSa32525即cos2=cos2a-sin2=252.212C2.2cosa-sna1-tana【解法2】:cos20=cosa-sma-=-cos+sin01+tana【解法11:由cos2=,。为锐角,.,.2仪生皿2。0cos(+6)=-乎,a、均为锐角v+夕4,sin(+/?)=J1-sin2(y)=.cos(-)=cos2-(+)=cos2acos(+)+sin2sin(+)=即sin(a-)=sin22-(+=sin2acos(+6)一cos2asin(+)=tan(-y9)=-v7COS(-/?)11【解法2:a为锐角,cos2=
10、-,2(0,),.sin2a=J1-cosa=发,C24tan2=.7tan2a-tan(+7)1+tan2atan(+7)a、/7均为锐角,二十0,乃卜又:05(+夕)=一日,.飞皿2+/7)=,即tan(+0=-2,tan(/)=tan2(+夕)=2.己知COSa+cos/?+cosy=O,sin+sin夕+siny=0,由此你能得出哪些结论?(至少写出三个);(2)己知O,a2,cosa+sJ+cos=0,sina+sin7+sin=0-a的值.【解析】(1)【解法1】已知式两边平方、相加,得COS%+COS2/7+cos2/+2cosacosy0+2cos7cos/+2coscosa+
11、sin2+sin+sin1+2sinsin/+2sinsin/+2sinsina=0即3+2cos(-0+cos(,-y)+cos(y-)=O3.cos(-+cos(/7-7)+cos(/-a)=-【解法2】移项,得osa+8s/=-cos/,Sina+Sin尸=-sin/,2+(2)2,得cos(a/)=_;.2:_18同理可得CoS(,_7)=-g,cos(y-a)=相乘得cos(a-0cos(A-y)cos(y-a)=【解法3】设点A(COSa,sina),5(cos7,sin7),C(8sy,siny),则4B、C3点在单位圆上,原点。为.ANC的外心.因3点到0的距离相等且等于1,根据重心公式,得Gx=g(COSa+cos/+cos/)=0,Gy=;(Sina+sin/?+sin/)=0.即重心G与外心0重合,故.ABC为正三角形.(2)解:由题设,得彳cos=-cosa-COS民sin/=-sina-SiM2+2得1=1+1+2cosass2sinasin.,.cos(-a)=-由于一(0,2),:.-a=笄或/?一=与.同理可得cos(-)=-g,同样有/一=等或7-=-.AG但由于0,a0y-a、:.-a不可能取-/一二=T