离心泵气蚀的主要原因分析.docx
《离心泵气蚀的主要原因分析.docx》由会员分享,可在线阅读,更多相关《离心泵气蚀的主要原因分析.docx(7页珍藏版)》请在第一文库网上搜索。
1、1流体物理特性方面的影响流体物理特性对离心泵气蚀的影响主要包括:所输送流体的纯净度、PH值和电解质浓度、溶解气体量、温度、运动黏度、汽化压力及热力学性质。(1)纯净度(所含固体颗粒物浓度)的影响流体中所含固体杂质越多,将导致气蚀核子的数量增多。从而加速气蚀的发生与发展。(2)pH值和电解质浓度的影响输送极性介质的离心泵(如一般的水泵)与输送非极性介质的离心泵(输送苯、烷炫等有机物的泵),其气蚀机理是不同的。输送极性介质的离心泵的气蚀损伤可能包括机械作用、化学腐蚀(与流体PH值有关)、电化学腐蚀(与流体电解质浓度有关);而输送非极性介质的离心泵的气蚀损伤可能只有机械作用。(3)气体溶解度的影响国
2、外研究表明流体内溶解的气体含量对气蚀核子的产生与发展起到促进作用。(4)气化压力的影响研究表明随着气化压力的增高,气蚀损伤先升高后降低。因为随着气化压力的升高,流体内形成的不稳定气泡核的数量也不断升高,从而引起气泡破裂数量的增多,冲击波强度增大,气蚀率上升。但如果气化压力继续增大,使气泡数增加到一定限度,气泡群形成一种层间隔的作用,阻止了冲击波行进,削弱其强度,气蚀的破坏程度反而会逐渐降低。(5)温度的影响在流体中温度的改变将导致气化压力、气体溶解度、表面张力等其他影响气蚀的物理性质出现较大改变。由此可见,温度对气蚀的影响机制较为复杂,需结合实际情况进行判断。(6)表面张力的影响当其他因素保持
3、不变,降低流体表面张力可以减少气蚀损伤。因为随着流体表面张力的减小,气泡溃灭所产生冲击波的强度减弱,气蚀速率降低。(7)液体黏度的影响流体黏度越大,流速越低,达到高压区的气泡数越少,气泡破灭所产生冲击波的强度就减小。同时,流体黏度越大,对冲击波削弱也越大。因此,流体的黏度越低,气蚀损伤越严重。(8)液体的可压缩性和密度的影响随着流体密度的增加,可压缩性降低,气蚀损失增加。2.过流部件材质特性方面的影响由于泵的气蚀损伤主要体现为对过流部件材质的损坏。因此,过流部件的材料性能也将在一定程度上对离心泵的气蚀产生影响,采用抗气蚀性能良好的材料制造过流部件是减少离心泵气蚀影响的有效措施。(1)材料的硬度
4、以AISI304材质的叶轮为例,气蚀会造成叶轮材料的加工硬化和相变诱发马氏体钢,这种变化将反过来阻止材料的进一步气蚀。而加工硬化和相变诱发马氏体钢的抗气蚀性主要依赖于叶轮材质的硬度。(2)加工硬化与抗疲劳性能材料加工硬化指数越高,抗疲劳性能越好,则材料抗气蚀性能越好。(3)晶体结构的影响在其他条件确定的情况下,抗气蚀率是显微结构的函数。在立方晶系中,由于体心立方晶格的金属具有较高的应变速率敏感性,当应变速率上升时,会引起快速的穿晶脆性断裂和解理断裂,并导致点蚀形成,从而产生较大的磨蚀率。对于密排六方晶格的金属,当接近于理想的轴比且处于气蚀环境时,六个滑移系全部开动,迅速转变成稳定态FCC,吸收
5、气蚀应力所做的功(公众号:煤化工知库),使磨蚀率下降。对于面心立方晶格的金属,滑移系较多,在高应力作用下,将发生塑性流变。因此,孕育期长,磨蚀率降低。总之,在气蚀过程中,发生由BCC向HCP或FCC向HCP转变,都将提高抗气蚀性。(4)晶粒大小的影响叶轮所使用金属材料的晶粒尺寸越小,抗气蚀性能越好。因为金属的晶粒尺寸越小,细晶使晶界增多,位错滑移受阻,裂纹在扩展中受阻力增大,延长了磨蚀寿命。3.离心泵结构设计方面的影响在离心泵结构设计方面对泵气蚀特性起主要影响的可以分为泵体设计和叶轮设计两个方面。研究表明影响离心泵气蚀性能的直接因素是叶轮进口的局部流动均匀性,因此叶轮结构设计比泵体的设计对离心
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离心泵 气蚀 主要原因 分析
![提示](https://www.001doc.com/images/bang_tan.gif)