基于数据全生命周期的数据资产价值评估方法及应用.docx
《基于数据全生命周期的数据资产价值评估方法及应用.docx》由会员分享,可在线阅读,更多相关《基于数据全生命周期的数据资产价值评估方法及应用.docx(16页珍藏版)》请在第一文库网上搜索。
1、基于数据全生命周期的数据资产价值评估方法及应用引言“十四五”数字经济发展规划中指出,数字经济是继农业经济、工业经济之后的主要经济形态,是以数据资源为关键要素,以现代信息网络为主要载体,以信息通信技术融合应用、全要素数字化转型为重要推动力,促进公平与效率更加统一的新经济形态1。数据要素是数字经济深化发展的核心引擎,需要有序开展数据确权、定价和交易活动,并探索建设与数据要素价值和贡献相适应的收入分配机制。数据资产价值评估是实现数据流通和应用的重要基础,数字经济的发展迫切需要人们对评估数据资产这一课题进行深入研究。在国家大力推动数字经济发展的同时,企业也在积极响应并开展大规模的数字化转型。目前,科技
2、的高速发展使数据在工业生产中的体量日益增大,同时各种技术也日新月异。不论是内部管理方面,还是外部交易方面,企业都需要一套合理的数据资产价值评估方法。数据资产的合理估值对内可以衡量企业数字化建设进程和数据运营效果,对外可以提升数据资产的流动性,如数据交易,给企业提供新的收益来源。从公司价值层面来说,数据资产价值将在企业的会计3张报表中展现或在附录中披露,这将直接影响未来企业的市场估值。目前,世界级科技公司基于大量用户数据进行挖掘和分析以创造商业盈利。然而,数据资产价值的衡量仍缺乏实际的解决方案。广为人知的IBM大数据4V特性意味着大数据的价值评估一定是一个难题。尽管各种关于大数据的研究、挖掘、分
3、析、实践和应用等热门技术都已经取得了显著的成果,但是客观且科学的数据资产价值评估体系和数据交易研究仍处于初期。只有经过科学管理,并且能够被运营转化为应用价值的数据才能算作真正的数据资产。在价值评估方法论方面,传统领域包括无套利定价、收益最大化定价、公平和真实定价。同时,也有一些涉及机器学习的动态数据定价、在线定价以及联合和协作学习中的定价方法2。综合目前的数据估值发展研究,总结得出,同时考虑数据的经济因素(如数据成本、市场收益等)和非经济因素(如数据质量、时效性等)是更可行且可操作的方案。迄今为止,数据资产价值评估问题尚未有成熟的解决案例和类似计算器的数据资产价值评估操作系统。本文基于国内互联
4、网行业通用的数据技术,设计并开发了一套数据资产评估模型,旨在解决这个问题。一、研究现状数据资产价值评估属于交叉学科,涉及计算机科学、经济学、市场营销学以及新兴的数据科学等多个领域。由于数据具有多面性并且价值评估的目的不同,其原理和侧重点也有一定差异。近年来,随着信息和数字化时代的发展,该领域的研究逐渐受到重视。姚建国等人3研究了基于燧的数据价值衡量与定价方法,仅依赖数据交易平台收集到的数据集的浏览点击次数和获得该数据集支付的成本费用信息来对数据进行定价。信息焙定价法充分考虑了数据资产的稀缺性4,但该方法缺乏对数据的本质的讨论,没有考虑到实际数据源获取和加工等问题的复杂性。2019年,中国资产评
5、估协会制定了资产评估专家指引第9号一一数据资产评估5,阐述了成本法、收益法和市场法3种方法。成本法适用于对个人数据的隐私补偿定价6;收益法主要用传统金融学模型对未来现金流和收益做折算,直接量化数据效用,体现买方市场增收;市场法主要基于有效率的交易价格(类似二级市场的股票)的供需关系进行定价。对于难以量化的数据资产来说,市场法(如拍卖和交易)是最公正的方法。然而现实情况是数据交易所的机制并不是对所有的企业都适用的,并且尚未进行规模化发展。闭珊珊等人7基于成本法提出了一种数据资产评估的CIME模型,即成本费用、固有价值、市场供求和环境约束4个因素分别对应4种简单的方法:成本评估、层次分析法(ana
6、1ytichierarchyprocess,AHP)评估、市场法评估和收益法评估。但其更侧重于对系统框架的构建和工具的设计,并没有对方案的算法和实现技术进行进一步的精细化设计,同时缺乏落地的结果的合理性检验。熊巧琴等人8总结了数据资产的特性、流通方式、交易方式以及不同的数据估值方法和局限性,同时对数据产品作为交易对象和区块链技术如何完善交易体系进行了讨论。但是其仅从理论和研究现状方面进行了总结以及客观评价,并没有给出具体可以进行实际操作的解法。与经典的金融领域中的资产抽象的资产估值问题不同,BabaiOff等人9认为数据资产具有协同性,即不同的数据集组合可以带来不同的价值;Kerber10指出
7、数据资产具有先验不确定性,即如果买方了解该数据资产的详细信息,则数据带来的效用价值难以确定。Den1ChCnkO等人11认为数据只有满足了6个重要属性,才可以进行价值评估,分别为独立、可靠、可复用、可互换、可操作、可衡量(sovereign,trusted,reusab1e,exchangeab1e,actionab1e,measurab1e),即STREAM原则,这为未来的数据交易提供了一些标准和参考。Pei等人2对数据资产评估背后的动机、基础原理和相关方法进行了总结,但该文章仅从理论层面进行探讨,缺乏实际案例。而在信息经济学12中,资产估值工作被分为3个阶段:质量衡量、价值衡量和经济效益衡
8、量。资产价值衡量指标如图1所示。其中,质量衡量指标比较可靠,而价值衡量指标和经济效益衡量指标则更多是理论指导,不太具备实际参考价值。图1资产价值衡量指标现有大多数研究还停留在理论层面,仅对数据的价值评估因素进行描述,如从数据使用者、数据生产者、数据管理者等视角进行分析,或者根据某个学科专业,在该学科的背景下解释数据资产价值问题。然而,数据资产价值问题涵盖的领域非常广泛,目前还没有一套完整的数据资产价值评估方案,能够全面考虑数据从生产到消费的价值链,并能够在实际生产实践中落地,取得明显的效果和成果。本文结合数据的生产和使用路径,基于数据全生命周期的框架,提出了一个具有实际应用意义的企业数据资产价
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 数据 生命周期 资产 价值 评估 方法 应用