MEMS谐振器的发展历程.docx
《MEMS谐振器的发展历程.docx》由会员分享,可在线阅读,更多相关《MEMS谐振器的发展历程.docx(4页珍藏版)》请在第一文库网上搜索。
1、MEMS谐振器的发展历程20世纪中期以来,频率控制的市场就是由石英晶体谐振器和石英振荡器所主导的。甚至到了今天,几乎所有的电子设备在某方面仍是依赖机械石英晶体来产生多种可能运行频率中的至少一种。现今市场上有无数的电子器件,从吉他扩音器到腕表,从智能手机到叉车等,其中绝大多数都使用晶体或晶体振荡器(X0) o由于电子市场每年要用到无数的晶体,庞大的规模经济促进了石英晶体和石英振荡器的制造精密程度达到了新高一一提供了更小、更薄、频率更高的解决方案。在此之前,可行的石英晶体替代方案屈指可数,因为石英压电谐振器的特性和稳定性众所皆知,所以很容易做出性能可靠的晶体振荡器。可是过去几年来,效仿拥有两个元件
2、(谐振器和放大器)架构的晶体振荡器的微机电系统(MEMS)振荡器已打入了频率控制市场。这些MEMS振荡器具有绝佳的可靠性,并且可提供具有成本优势的各种封装尺寸,尤其是在晶体振荡器上属于高成本结构的小巧型封装。此外,通过引进单芯片MEMS解决方案,把MEMS谐振器直接叠放在CMOS放大器基座的上方后,MEMS振荡器的可靠性、可编程性、温度稳定性和成本水平如今也得以更上一层楼。晶体振荡器晶体振荡器的工作频率范围广一一从几千赫兹一直到几百兆赫兹。晶体振荡器在金属盖密封陶瓷封装中结合了石英谐振器以及放大器电路。陶瓷封装和金属盖为非常脆弱的晶体提供了强大的防护罩,使组装好的元件避免受损。一般来说,放大器
3、电路会充分运用晶体的压电性,以电反馈来创造特定频率的共振或振荡,并由晶体谐振器的大小、切割和电镀来控制。为了支持电子产业所需的范围宽广的频率,频率控制供应供应商必须设计、储存和制造数百、甚至数千种不同的定制晶体谐振器。除了定制晶体谐振器,石英振荡器解决方案还面临着制造上的挑战。在整个晶体市场上,便携设备占据很大的比重。更加轻薄小型的便携设备使所有的供应商必须提供体积愈来愈小的元件。而随着所有需求频率的石英谐振器尺寸的缩减,更小、更脆弱的晶体给制造的复杂度与可靠性带来了挑战,这就为晶体式振荡器带来了问题。此外,晶振方案在每个市场上都面临着一大难题,那就是它们先天上对环境因素很敏感,像震动、摇晃、
4、热应力和制造上的变化都会造成启动问题和后续的使用故障。MEMS谐振器过去几年来,MEMS振荡器已成为石英解决方案的可行替代方案,原因有几点。第一,MEMS振荡器是在以硅材料为基础(硅工艺,silicon-based processes)的工艺流程中制造,其品质管理十分严格,因此只要供应商设计、保障和赋予振荡器的特性得当,所生产的众多元件都能具备非常可靠的性能。第二,硅工艺的直接结果就是符合摩尔定律,亦即处理能力会愈来愈强大,成本会愈来愈低。换句话说,更小、更先进的硅器件在成本上势必会逐渐降低。而遗憾的是,晶振方案则和这项定律背道而驰,亦即材料会随着它体积的缩小而变得更贵,原因就在于上述的制造难
5、题。此外,随着晶体的制造变得更难且更贵,其产量也会因为器件愈来愈脆弱与小巧而下降。第三个优点同样源于硅工艺。属于硅解决方案的MEMS振荡器天生就对环境因素比较有抵抗力。但这并不代表所有的MEMS解决方案在这方面都一样理想,产品设计会大大影响到不同的MEMS振荡器的工作能力。不过,硅解决方案比晶体、尤其是小晶体在抵抗震动与摇晃能力方面更强,这是不争的事实。第一代MEMS振荡器第一代的MEMS振荡器跟石英振荡器的架构类似,都是把两个截然不同的元件结合起来,一是谐振器,一是能补偿谐振器频率的任何漂移(drift)的放大器IC/基座芯片。采用MEMS使振荡器的制造大为改善,因为它免除了石英振荡器所需要
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- MEMS 谐振器 发展 历程
