第4讲 不等式的证明.docx
《第4讲 不等式的证明.docx》由会员分享,可在线阅读,更多相关《第4讲 不等式的证明.docx(15页珍藏版)》请在第一文库网上搜索。
1、第4讲不等式的证明不等式问题是导函数考试的重点,也是难点.一方面是导函数的进一步应用,利用导函数研究出函数的单调性和最值,然后利用单调性来证明和解决不等式问题.反过来,也可以利用不等式来判定导函数的正负号进而来研究函数单调性,所以不等式在基础阶段起重要的衔接作用.在后面的高级课程里面,不等式也是起着关键作用,特别是和放缩法结合来证明不等式,赋值法来找到零点区间等.在后面的极值点偏移和双变量问题都围绕着不等式展开,要好好体会关于不等式的证明,深刻理解不等式在导函数中的作用.不等式问题的核心就是合理地构造函数,函数的构造将在后面章节讲解,这里要重点掌握证明不等式的核心思路.其次是理解不等式的含义是
2、图像之间的上下位置关系,不等式“X)g(X)的解是“X)在g(对图像上方时X的取值范围.证明无参不等式不等式恒(能)成立问题的转换方法:若/(x)在区间。上有最值,则(1)恒成立xD,(x)O/(x)minO.VxD,(x)O/(x)maxOo/(x)皿03x。J(x)Oo/(x)n1in0.【例1】已知函数/(x)=e-f.证明:当.0时,/(x).1.【解析】证明:函数/(x)=e-f,则x)=e-2x令g(x)=ex-2x,则gO,.g(x)在X=1n2处取得最小值.(x).(1n2)=2-21n20.,Wo./(冗)在0,+8)单调递增.().(0)=1.x.0时,/(x).1.例2已
3、知函数/(x)=(1+x)1nx+-,求证:/(x).x.X11_-【解析】证明:由/(x).xW(1+x)1nx+-.x.整理得(1+x)Inx+.0,1X化简得IrU+.0.X令g(x)=1nx+-1,贝Ug,(X)=U=Y.当OVXV1时,g,(X)1时,g(x)O,g(x)单调递增.g(x)min=g(1)=,即g(x).0恒成立./(jt).x恒成立.【例3】函数/(x)=x-2+3hu.证明:/(x)”2无一2对任意正实数亘成立.【解析】证明:由/(x)=Xd+3hu;,2x-2(x0)得2-%一/+31叱,0对任意正实数X恒成立.设g(x)=2-jc-2+31,则g,(x”-2+
4、二(I)(2x+3)XX当0O;当x1时,g(x)v.g(力在(0,1)上单调递增,在(1,笆)上单调递减.x.0时,g(x)在X=I处有最大值g=0.g(x)0对任意正实数X恒成立,即2-工-+引叫,0对任意正实数X恒成立,即/(x),2无一2,原命题得证.不等式恒成立求参数取值范围参变分离参变分离法解不等式恒成立求参数取值范围的步骤:第一步:参变分离.若/(x,).0(xD)能参变分离,则将问题转化为:a/(x)或f(x)a/(x)max4(x)0时,/(x)1,求的取值范围.【解析】由已知可得。O,i(x)(0)=2.g(x)O.g()在(0,+8)上单调递增.g(x)g(O)=O.4,
5、O例3己知函数/(x)=Inr-X2-冰,若/(尤),0恒成立,求的取值范围.【解析】由已知得InX-f-ax;,O(Xo),则当x0时,竺一X恒成立.X令(X)=史7(x0),r,11-Inx则“二p.令左(力=I-X2-InX(X0),则当x0时,(x)=-2x-0.在(1,+纪)上,A,(x)恒成立,求加的取值范围.【解析】/(x)-1恒成立,即9一2x+1mx2恒成立.(1)当X=O时,对于任意的wR,2-20恒成立.2(2)当X0时,/0,.e(x)在(o,+oo)单调递增,e()e(o)=o,即z(%)o.(x)在(0,+8)单调递增.又M(=o,故知在(o,)上,M)0.从而g(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第4讲 不等式的证明 不等式 证明