基于现场可编程门阵列技术设计时钟分配网络的应用方案.docx
《基于现场可编程门阵列技术设计时钟分配网络的应用方案.docx》由会员分享,可在线阅读,更多相关《基于现场可编程门阵列技术设计时钟分配网络的应用方案.docx(4页珍藏版)》请在第一文库网上搜索。
1、基于现场可编程门阵列技术设计时钟分配网络的应用方案1引言自产生到现在,现场可编程门阵列(FPGA)以其独特的优点被成功应用在工业控制、数据通信、计算机硬件等领域,也成功应用在保密通信和多种先进的武器系统中。我国在FPGA的开发方面起步较晚,开发具有自主知识产权的FPGA具有重要意义。各种应用条件要求FPGA能够快速进行大量数据传输与处理,同时,不断提高的工艺水平已将CMOS电路速度提高到了一个新的层次,这要求FPGA的时钟信号有更高的速度与精度。时钟分配网络决定了时钟的速度与精度,决定着数据的稳定与可靠。本文结合FPGA的特点,在优化时钟网络功耗与面积基础上研究FPGA内嵌时钟锁相电路,从整体
2、上给出了一种FPGA时钟分配网络设计方案。2FPGA的时钟布线结构高性能的FPGA可用于实现一个完整的系统,系统有不同组成部分,每一部分需要不同的时钟,这就需要多个时钟组成时钟网络。许多FPGA允许利用通用逻辑布线资源进行时钟布线,但其时钟偏差较大,一般设计中需单独设计时钟网络。另外,时钟网络的功耗占了FPGA的很大一部分,设计时要先考虑功耗、面积,严格设计以给FPGA中的每个模块提供低功耗、高速、偏差小的时钟信号。通常FPGA均将时钟信号分为全局和局部两种,把芯片分为四个象限区域,布线时将时钟信号分层次布到每个区域。局部时钟只分布在FPGA的一个区域,可连到区域中的每一个触发器。全局时钟分布
3、于整个芯片,但不一定要连到每一个逻辑单元中的触发器。A1tera公司的StraiiXII系列提供了16个全局时钟信号,可连到FPGA的每一个触发器,同时在每个象限区域提供8个时钟信号。同样,Xi1inX的VirtCXIIPro也提供了16个全局时钟,给每个象限区域提供8个局部时钟,但其全局时钟不直接驱动触发器,而只驱动到每个象限的局部时钟网。根据现有的FPGA的时钟网络,可提出一个有效的时钟模型。模型将时钟网络分为三级,第一级是从芯片外围的时钟源到时钟区域中心的可编程连接,包含全局和局部两个平行的时钟网络;第二级是从区域中心时钟信号到此区域中逻辑块间的可编程连接,每个区域都有这样的网络;第三级
4、(图3)是从逻辑块时钟到其中逻辑单元的可编程连接。国IW一版对忡网络第2第二谍财伸网络.o图3第三级时忡网络图1示范性的将FPGA芯片分成了9个区域,时钟源置于芯片四周,芯片的每一边布有四分之一的时钟源,全局时钟从每一边的时钟源引到FPGA中心,再通过H树连到每个区域的中心。局部网络从与本区域最邻近时的芯片两边选择局部时钟源,将其连到区域中心。每个区域的逻辑块通过S幽控制的多路选择器可以灵活的选择使用全局或是局部时钟(见图2)。此方式中,FPGA可支持多个置于芯片周围的时钟源,同时通过限制芯片中每一区域能同时使用的时钟数,有效减少了整个时钟分配网络的复杂性,而对性能影响较小。利用这个模型可将时
5、钟网络的组成单元如时钟源数,全局和局部时钟数,时钟区域数等参数化,然后研究参数变化对芯片面积及功耗的影响,由此可以得出一个功耗与面积优化的时钟网络结构3。3利用锁相环的时钟分配结构通常在速度不高,芯片的复杂度不是很高的情况下,通过选择合适的时钟分配网络就可得到满足要求的FPGA时钟。随着复杂度与速度的提高,因温度、工艺参数或电遮电压变化所引起的时钟偏差严重影响FPGA的工作。此时需在FPGA时钟网络结构中设计锁相环将时钟信号锁定在稳定的参考频率上,消除分配网络的时钟偏差,使芯片中的触发器能准确地同步工作。同时,利用锁相环的频率合成功能,FPGA芯片内部可工作在一个较高的频率上,而外部接口工作于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 现场 可编程 门阵列 技术设计 时钟 分配 网络 应用 方案