云边协同简明课程.docx
《云边协同简明课程.docx》由会员分享,可在线阅读,更多相关《云边协同简明课程.docx(7页珍藏版)》请在第一文库网上搜索。
1、云边协同简明课程导读:大数据时代的个显著特点就是云端与边缘端的协同计算。通过边缘端与云端的协同计算,能够对众多的用户数据进行归纳以及推理,从而挖掘出更多的有用信息,而这些信息可以帮助决策者进行决策,减少风险。这些都离不开云计算与边缘计算。正如前面所述,云计算是一种基于云的计算方式,这里的云指的是通过网络连接的软硬件资源。依赖互联网,可以将各种共享的软硬件资源分配给多个计算机以及其他终端使用,这使得终端设备可以将耗费计算资源多的应用程序、计算过程放到云上进行,大大增加了终端设备的运行效率。01云边协同是什么边缘计算是一种分布式运算的架构,不同于云计算,它将之前由中心服务器负责的任务加以分解,并同
2、将这些分解之后的任务片段分发至网络的边缘端,由边缘端去负责运算。边缘计算降低了相关信息的传输时间,减小了延迟。云计算虽然可以将大型的计算任务放到云端去进行运算,但是对于需耍低延迟的应用来说,则会遇到网络带宽瓶颈等问题。边缘计算可以将任务放到边缘端来进行,因此边缘计算受到了本地边缘终端计算能力的限制。为了解决上述云计算与边缘计算的缺点,云边协同应运而生。云边协同将云计算与边缘计算紧密地结合起来,通过合理地分配云计算与边缘计算的任务,实现了云计算的下沉,将云计算、云分析扩展到边缘端。随着技术的发展,云边协同一定会在未来的互联网产业之中占有一席之地。02云边协同下的数据安全场景随着云计算与边缘计算的
3、发展,数据安全问题也成为一个重要的研究课题。针对数据安全保护,首先需耍明确数据安全保护的相关场景。在云边协同的环境下,主要考虑两种数据安全场景:训练与查询。在云边协同训练场景下,可以有以下应用实例。(1)云边协同人脸识别模型训练对于一个机器学习模型来说,训练样本的数量会影响到最终模型的效果。而在大数据时代下,各种各样的智能设备都可以进行数据样本的采集。然而如果将采集的设备传输到云端进行模型训练则会面临一些问题:一是带宽与延迟的消耗;二是数据保存在云端则会有严重的隐私泄露隐患。在这种场景下,云边协同进行模型的训练则是一个很好的选择。得益于边缘端的数据收集能力,最终训练出来的模型的泛化性能会更好。
4、其中边缘端负责数据的收集以及部分的模型训练,云端负责将边缘端的模型更新聚合并且发送回边缘端。而传统的人脸识别模型训练通常是先收集人脸数据,然后对人脸数据进行标注,同时在中心服务器进行人脸识别模型训练,最后将训练得到的模型部署到边缘端。在上述训练过程中,需要由数据收集边缘端收集数据,同时与中心服务器进行直接的数据交互,而直接的数据交互势必导致隐私的泄露问题。相比于传统的人脸识别模型训练,云边协同下的人脸识别模型训练(见图1)不需要将人脸数据上传至中心服务器,而这防止了某种程度的隐私泄露问题,然而云边协同下的人脸识别模型训练仍然面临着许多问题,例如训练数据的标注问题以及如何更好地进行分布式训练,这
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 协同 简明 课程