最新版圆锥曲线专题17之1 基础知识.docx
《最新版圆锥曲线专题17之1 基础知识.docx》由会员分享,可在线阅读,更多相关《最新版圆锥曲线专题17之1 基础知识.docx(23页珍藏版)》请在第一文库网上搜索。
1、专题1白云出岫基础知识点第一锦椭圆横看成岭侧成峰,远近高低各不同;不同的角度,看到的世界也不同,站的位置不同,领略到的风景也不同.在学习圆锥曲线的过程中,从不同的角度去分析,去理解,去总结,才能欣赏到圆锥曲线世界的独特风景.圆锥曲线是宇宙的艺术,是一种对称和谐之美,这种美是杂乱中的秩序,是变化中的规律.圆锥曲线的定义,揭示了圆锥曲线的前世今生,揭示了曲线的内在联系,使焦点、离心率、准线构成了一个统一的整体,正所谓万物皆有因,万般皆有果;所有巧合,皆是天意,冥冥之中,皆是定数.学习数学,让你领略波澜壮阔之势,拥有高瞻远瞩之能,欣赏对称和谐之美,体会茅塞顿开之境!本书将在这里起航,愿我们一同在知识
2、的浩瀚大海中遨游,探索宇宙的轨迹,领略世界的奥义.考点一椭圆基础1 .椭圆的定义平面内一个动点P到两个定点尸1、6的距离之和等于常数(P+P周=2忻周),这个动点P的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.若IPK1+|尸耳|=|耳闾,则动点尸的轨迹为线段耳仆若P6+P&b0)22图形Jt41V1。,b7ra性质焦点E(-c,0),(c,O)M(Oi),6(0,C)焦距IKgI=2C(C=/-从)IEKI=2c(c=Ja2-b2)范围,yxb,ya对称性关于X轴、),轴和原点对称顶点(,O),(0,Z?)(0,),(h,0)轴长轴长=2,短轴长=助离心率e=-(0eb0
3、),点P(XO,%)在椭圆内部,等价于今+g1,结合线性规划的知识点来分析.ab25 .椭圆焦点三角形的面积为S=E.gng(0为焦距对应的张角)2考点二对椭圆定义的基础考察在处理椭圆问题的时候,要优先思考定义,俗称定义优先原则,而非上来就直接直线和椭圆联立.所以在解题的时候如果看到点在椭圆上,要时刻思考椭圆定义,将该点和焦点连线,用上定义分析问题.利用定义求解最值问题及轨迹问题,详见本章节第一定义的内容两点,若IKP1+IKQI=IO,则P0等于()A.8B.6C.4D.2例2(绥化月考)椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一
4、个水平放置的椭圆形台球盘,满足方程:江+=1,点A、8是它的169两个焦点,当静止的小球放在点A处,从点A沿直线出发,经椭圆壁(非椭圆长轴端点)反弹后,回到点A时,小球经过的最短路程是()A.20B.18C.16D.以上均有可能【例3】(武邑月考)椭圆4=1的左、右焦点分别为耳,玛,点P在椭圆上,如果M的中点在),轴上,那么PI是IPE1的()A.7倍B.6倍C.5倍D.4倍【例4】(深圳期中)已知椭圆C:+f=1,点用与C的焦点不重合,若M关于C的焦点的对称点分别2516为A,B,线段MN的中点在。上,则4V+8N=()A.10B.15C.20D.25【例5】(荔湾期中)椭圆+=1的左焦点为
5、尸,直线x=z与椭圆相交于点A、B,当FAB43的周长最大时,E钻的面积是()A.-B.2C.-D.323【例6】已知椭圆+3=1(。0)经过点(1,当),过顶点3,0),(0)的直线与圆/+V=|相切,则椭圆的方程为()AX2dX23/.X24y2X2Sy2.A.+v=1B.+-=1C.十二一=1D.-=12-423355考点三桶圆的简单几何性质【例7】(龙海期中)已知方程匕+上=1表示椭圆,求女的取值范围4一kk-2【例8】(永州二模)已知点耳,K是椭圆/+3y2=i2的两个焦点,点P是该椭圆上的一个动点,那么IPE+I的最小值是()A.OB.4C.42D.43注:点到原点的距离,可以利用
6、点到点的距离公式来分析求解,用比替换掉/,整理成关于小的函数来求解最值.【例9】(湖北期末)已知椭圆x2+gy2=30)与a2,1),8(4,3)为端点的线段没有公共点,则。的【例4天心月考)已知椭圆呜+方=1(b0)的左右焦点分别为片、F2,O为坐标原点,A为椭圆上一点,且A645=0,直线A8交),轴于点M,若IaKI=6OM,则0年与4AEK的面积之比为()A4D4厂25C5AB.CD812714418【例II(河南月考)已知夕为椭圆C:?+q=1上一个动点,F1F?是椭圆C的左、右焦点,O为坐标原点,O到椭圆C在P点处的切线距离为d,若IPK1P6=,则d=.张忐求解切线斜率的时候可应
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新版圆锥曲线专题17之1 基础知识 最新版 圆锥曲线 专题 17