基于深度学习的水下模糊环境下鱼类识别研究 通信工程专业.docx
《基于深度学习的水下模糊环境下鱼类识别研究 通信工程专业.docx》由会员分享,可在线阅读,更多相关《基于深度学习的水下模糊环境下鱼类识别研究 通信工程专业.docx(12页珍藏版)》请在第一文库网上搜索。
1、中国大陆的海岸线长达18000多千米,有着丰富的海洋资源。鱼可不只有作为人类的盘中餐这个作用,还是生态链里面的重要平衡者,没有了他们生态都会遭到巨大的破坏,也是地球上重要的海洋生物资源,所以对于水产养殖的现代化管理,渔场环境的实时监测,尤其是水下模糊环境下的鱼类识别对我国开发和利用海洋鱼类等生物资源有着不可或缺的价值。传统的鱼类图像识别往往存在识别速度慢,识别率低,误判率,漏检率高等问题。随着现代信息社会,新科技,新技术,新设施的发展以及深度学习算法框架的完善,许多基于深度学习的水下鱼类图像识别算法被提出,例如:基于R-CNN深度学习的鱼类目标检测算法、基于水下图像底层特征的鱼类目标检测等算法
2、,但通常都因为水下环境恶劣、可见性差、拍摄图片品质差等因素导致最终识别效果很差。本文将深度学习优秀的学习能力以及可移植性好等优点运用于水下模糊环境的鱼类识别领域,开展了基于深度学习的水下模糊环境下鱼类识别研究。目前YO1v5在目标检测领域从速度和精度综合来看,是明显优于其它先进的目标检测算法如:EfficientDet.SSD.FastR-CNN等。所以本文提出一种基于YO1OV5算法的水下模糊环境下鱼类识别模型。本文的主要工作和成果如下:(1)本文拍摄并制作了共计3595张水下模糊环境下的同种鱼类图片数据。为了克服水下模糊环境下拍摄图片整体光照强度低、可视范围小、水下背景模糊、杂质多等问题,
3、首先,在预处理阶段采用暗通道先验算法,以提高图像的清晰度、明度,减少图片品质导致人工数据集标注的误差。(2)针对Yo1ov5算法召回率低、mAP(平均准确度)低的问题,研究采用XXXXXX。实验结果验证了本文基于改进Yo1oV5算法的水下模糊环境下鱼类识别模型的有效性。关键词:鱼类鉴别;目标检测;Y010;深度学习1绪论1.1 研究背景还要生态系统是迄今为止己有的生态系统中最大的,海洋发展战略的提出,让它的相关所有物种数目都得到了提高。地球上约有200万种不同的海洋生物。海洋里面的鱼类扮演了人们的食物餐品和生态系统重要的调节者的两个角色,两个方面都赋予了无可替代的职能。因而在水产养殖行业的智能
4、化运营、鱼类生活环境的生物检测,特别是如何辨认深水区的鱼类品目这些关键的技术的学习和掌握对我们国家海洋业的各方面发展都气到了很重要的作用。鱼类检测和识别系统可以探索海洋生物的活动规律,运于改进水产养殖捕捞的方式,并在海洋鱼类知识科普宣传、海洋环境管理、稀有生物保护等领域有广泛的用途。其为检测海洋的鱼类品种的重要辅助工具,为今后对未知海域探索的有力保障。鱼类识别问题,由于鱼类的形态各异,大小不一,且水下拍摄图像存在能见度低,环境复杂,噪声大等问题。因而和另外的检测工作来比有了更高的要求。传统实现鱼类识别与分类的算法是基于传统的机器学习。首先由人工根据事物设计特征,然后向分类器中输入特征向量来完成
5、分类任务。然而,人工特征提取往往存在着特征提取困难、缺乏泛化性与通用性、工作量复杂又耗时等不可避免的缺点。近年来,由于人工智能在图像处理、自然语言处理、语言识别等诸多领域的取得了很大的成就,基于深度学习的图像识别技术得到了快速发展,并广泛应用于人脸识别、行为识别、字符识别等领域,具有很高的识别水平和识别精度以及鲁棒性。本文将深度学习优秀的学习能力以及可移植性好等优点运用于水下模糊环境的鱼类识别领域,开展了基于深度学习的水下模糊环境下鱼类识别研究。在解决了以前的方式不容易得到特性的难题的基础上,还有提升图像的精确度和增大可以辩识的位置。在水下模糊环境下,基于深度学习的鱼类识别检测将是一个非常重要
6、的研究课题,它不仅能克服传统方法中的特征提取难的问题,而且可以提高图像识别的准确率,扩大识别范围。同中国进行更多的海洋渔业的使用起到了很大的帮助。1.2 国内外研究现状1 21深度学习在图像识别领域研究现状对算法设计的全面理解一开始是作用于图像的处理方面。2018年的图灵奖获得者加拿大人杨立昆在1989年与他的合作伙伴就发现了卷积神经网络(CNN),CNN为一类包含了卷积层的全面神经网络模型。理论上来说,独立的卷积神经网络结构可以由一对特殊化处理的非线性卷积层、两个固定子采样层和一个全连通层构造出来。它最低包含了五层隐藏层,它是通过胡贝和维塞尔这两个专家建造的动物视觉模型为基础来构思的,尤其在
7、动物的V1和V2视觉皮层里面的各种类型的细胞的功能的借鉴。它在图像大小的方面获得了很大的突破。但是,CNN持续了很多年依旧没有得到创新,主要是因为卷积神经网络在大尺寸图像中不能达到理想的效果,计算机无法理解存在大量像素的自然图像中的内容,因此CNN在计算机可视化技术这个范畴里并不能造成很大的改变。2012年10月Hinton教授和他的学生AIeXKriZheVSky构建了一个由65万多个神经元、6000多万个待估计参数组成的卷积神经网络,在著名的ImageNet问题上取得了37.5%的Top1错误率。取得了当下最好的图像识别处理结果,极大地促进了深度学习在工业领域的综合应用,使深度学习在图像识
8、别领域取得了良好的成就。CNN至今为止,在图像识别这个领域已经进去了它发展的天花板阶段。然而辛顿于2012年发展并发表的深度神经网络却在行业里掀起了巨大的浪花。创新之处在于提升了神经系统的算法机制,权值衰减被于神经系统调节的过程被应用,以减小权值的幅度,阻碍网络的过度拟合情况。而且,计算机包括运算和CPU在内的能力正在光速提高,所以能够得到越来越多的结果在练习中得到发挥,让计算机的因特网上能够拿到拟合度比之前高的联系用的参数。中国的互联网领军企业百度公司早就在2012年就将它应用在很多识别(人间、物象)上,还利用它设计和制造了许许多多对方式产生了爆炸性影响的商品。到现在为止,深度学习网络模型对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于深度学习的水下模糊环境下鱼类识别研究 通信工程专业 基于 深度 学习 水下 模糊 环境 鱼类 识别 研究 通信工程 专业