《用因式分解法求解一元二次方程》word教案 公开课获奖2023北师版.docx
《《用因式分解法求解一元二次方程》word教案 公开课获奖2023北师版.docx》由会员分享,可在线阅读,更多相关《《用因式分解法求解一元二次方程》word教案 公开课获奖2023北师版.docx(16页珍藏版)》请在第一文库网上搜索。
1、2.4分解因式法分解因式法是解某些一元二次方程较为简便且灵活的一种特殊方法.它是把一个一元二次方程化为两个一元一次方程来解.体现了一种“降次J的思想,这种思想在以后处理高次方程时非常重要.这部分内容的基本要求是让学生学W会方法.本节的重、难点是利用分解因式法来解某些一元二次方程.由于标准中降低了分解因式的要求,根据学生已有的分解因式知识,学生仅能解决形如“x(x-a)=O2P2=0的特殊一元二次方程.所以在教学中,可以先出示一个较为简单的方程,让学生先各自求解,然后进行比较与评析,发现因式分解是解某些一元二次方程较为简便的方法,从而引出分解因式法.其基本思想和方法是:一个一元二次方程一边是零,
2、而另一边易于分解成两个一次因式时,可以使每一个因式等于零,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解.这种思想和方法是用分解因式法解一元二次方程的重点.通过方法的比较,力求让学生根据方程的具体特征,灵活选取适当的解法,从而让学生体会解决问题的多样性.教学目标(一)教学知识点1 .应用分解因式法解一些一元二次方程.2 .能根据具体一元二次方程的特征,灵活选择方程的解法.(二)能力训练要求1 .能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.2 .会用分解因式法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.(三)情感与价值观要求通过学生探讨一
3、元二次方程的解法,使他们知道分解因式法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度.再之,体会“降次”化归的思想.教学重点应用分解因式法解一元二次方程.教学难点形如x2=ax”的解法.教学方法启发引导式归纳教学法.教具准备投影片五张.第一张:复习练习(记作投影片2.4)第二张:引例(记作投影片2.4B)第三张;议一议(记作投影片2.40第四张:例题(记作投影片2.4D)第五张:想一想(记作投影片2.4E)教学过程I.巧设现实情景,引入新课师到现在为止,我们学习了解一元二次方程的三种方法:直接开平方法、配方法、公式法,下面同学们来做一练习.(出示投影片
4、2.4A)解下列方程:(1)2-4=0;(2)2-3x+1=0;(3)(x+1)2-25=0;(4)202+23-7=0.生老师,解以上方程可不可以用不同的方法?师可以呀.生甲解方程(D时,既可以用开平方法解,也可以用公式法来求解,就方程的特点,我采用了开平方法,即解:2-4=0,移项,得2=4.两边同时开平方,得x=2.乜=2,x-2.生乙解方程(2)时,既可以用配方法来解,也可以用公式法来解,我采用了公式法,解:这里a=1,b=-3,C=1. b-4ac=(-3)2-411=50,35Ax=-2-353-5x-2,XJ-2-师乙同学,你在解方程(2)时,为什么选用公式法,而不选配方法呢?生
5、乙我觉得配方法不如公式法简便.师同学们的意见呢?生齐声同意乙同学的意见.师很好,继续.生丙解方程(3)时,可以把(x+D当作整体,这时用开平方法简便,即解:移项,得(x+1)2=25.两边同时开平方,得x+1=5,即x+1=5,x+1=-5.x=4,x=-612生丁解方程(4)时,我用的公式法求解,即解:这里a=20,b=23,c=-7,b2-4ac=232-420(-7)=10890,_-23+T089_-2333x=-2720-=-40-师很好,由此我们知道:在已经学习的解一元二次方程的三种方法一直接开平方法、配方法、公式法中,直接开平方法只能解某些特殊形式的方程,配方法不如公式法简便.因
6、此,大家选用的方法主要是直接开平方法和公式法.公式法是解一元二次方程的通法,有普遍的适用性,即可以解任何一个一元二次方程.用公式法解一元二次方程,首先要把方程化为一般形式,从而正确地确定a、b、c的值;其次,通常应先计算b2-4ac的值,然后求解.一元二次方程是不是只有这三种解法呢?有没有其他的方法?今天我们就来进一步探讨一元二次方程的解法.II.讲授新课师下面我们来看一个题.(出示投影片2.4B)一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?师大家先独自求解,然后分组进行讨论、交流.生甲解这个题时,我先设这个数为X,根据题意,可得方程2=3x.然后我用公式法
7、来求解的.解:由方程x2=3x,得2-3x=0.这里a=1,b=-3,c=0.b2-4ac=(-3)2-410=90.39所以X=-乙即X=3,X=0.12因此这个数是0或3.生乙我也设这个数为X,同样列出方程X2=3x.解:把方程两边同时约去X,得x=3.所以这个数应该是3.生丙乙同学做错了,因为0的平方是0,0的3倍也是0.根据题意可知,这个数也可以是0.对,这说明乙同学在进行同解变形时,进行的是非同解变形,因此丢掉了一个根.大家在解方程的时候,需要注意:利用同解原理变形方程时,在方程两边同时乘以或除以的数,必须保证它不等于0,否则,变形就会错误.这个方程还有没有其他的解法呢?生丁我把方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 用因式分解法求解一元二次方程 用因式分解法求解一元二次方程word教案 公开课获奖2023北师版 因式 解法 求解 一元 二次方程 word 教案 公开 获奖 2023 北师版