《计量经济学复习试题.docx》由会员分享,可在线阅读,更多相关《计量经济学复习试题.docx(9页珍藏版)》请在第一文库网上搜索。
1、2.1.对于人均存款与人均收入之间的关系式S,=。+/匕+从使用美国36年的年度数据得如下估计模型,括号内为标准差:W=0.538=199.023(1)的经济解释是什么(2)。和夕的符号是什么为什么实际的符号与你的直觉一致吗如果有冲突的话,你可以给出可能的原因吗(3)对于拟合优度你有什么看法吗(4)检验是否每一个回归系数都与零显著不同(在1%水平下)。同时对零假设和备择假设、检验统计值、其分布和自由度以及拒绝零假设的标准进展陈述。你的结论是什么解答:(1)6为收入的边际储蓄倾向,表示人均收入每增加1美元时人均储蓄的预期平均变化量。(2)由于收入为零时,家庭仍会有支出,可预期零收入时的平均储蓄为
2、负,因此符号应为负。储蓄是收入的一局部,且会随着收入的增加而增加,因此预期的符号为正。实际的回归式中,的符号为正,与预期的一致。但截距项为负,与预期不符。这可能与由于模型的错误设定形造成的。如家庭的人口数可能影响家庭的储蓄形为,省略该变量将对截距项的估计产生影响;另一种可能就是线性设定可能不正确。(3)拟合优度刻画解释变量对被解释变量变化的解释能力。模型中53.8%的拟合优度,说明收入的变化可以解释储蓄中53.8%的变动。14)检验单个参数采用t检验,零假设为参数为零,备择假设为参数不为零。双变量情形下在零假设下t分布的自由度为n2=362=34。由t分布表知,双侧1%下的临界值位于2.750
3、与2.704之间。斜率项计算的t值为0.067/0.011=6.09,截距项计算的t值为384.105/151.105=2.54。可见斜率项计算的t值大于临界值,截距项小于临界值,因此拒绝斜率项为零的假设,但不拒绝截距项为零的假设。2-2.判断正误并说明理由:1)随机误差项Ui和残差项a是一回事2)总体回归函数给出了对应于每一个自变量的因变量的值3)线性回归模型意味着变量是线性的4)在线性回归模型中,解释变量是原因,被解释变量是结果5)随机变量的条件均值与非条件均值是一回事答:错;错;错;错;错。2-3.试证明:(1)eiO,从而:e=0Xx,=O(3) eiYi=0,即残差g与匕的估计值之积
4、的和为零。答:根据定义得知,从而使得:O=Z2=On证毕。证毕。证毕。2-4.下面数据是对X和Y的观察值得到的。Yi=I110;EXi=1680;XiYi=204200Xi2=315400;Yi2=133300假定满足所有的古典线性回归模型的假设,要求:(1)仇和仇(2)和2的标准差(3)R2(4)对由、2分别建设95%的置信区间利用置信区间法,你可以承受零假设:饱二0吗解:(1).G=168,F=I11nn-e;(匕一RY(中一2匕/十年)On-210-28)=费777.603154003.o1910x331605e(1)=73.81=8.5913Ya人1)=g=卫变=0.0023,se(,
5、)=0.(X)23=0.0484(4) 2ux,33160(5) Vp(r2.306)=95%,自由度为8.-2.3062122A2.306,解得:1.4085g41.0315为4的95%的置信区间。8.5913同理,.-2.306合急咨2.306,解得:0.4227凡0.646为四的95%的置信区间。由于分=0不在的置信区间内,故拒绝零假设:用=0。3.1以企业研发支出(R&D)占销售额的比重为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下:其中括号中为系数估计值的标准差。(1)解释Iog(XI)的系数。如果X1增加10%
6、,估计Y会变化多少个百分点这在经济上是一个很大的影响吗(2)针对R&D强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化的假设。分别在5%和10%的显著性水平上进展这个检验。(3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响解答:(I)IOg(XI)的系数说明在其他条件不变时,1Og(XI)变化1个单位,Y变化的单位数,即Y=0.321og(X1)0.32(X1/X1)=0.32100%,换言之,当企业销售X1增长100%时,企业研发支出占销售额的比重Y会增加0.32个百分点。由此,如果X1增加10%,Y会增加0.032个百分点。这在经济上不是一个较大的影响。(2)针对
7、备择假设H1:0,检验原假设H0:仇=0。易知计算的t统计量的值为t=0.320.22=1.468o在5%的显著性水平下,自由度为32-3=29的t分布的临界值为1.699(单侧),计算的t值小于该临界值,所以不拒绝原假设。意味着R&D强度不随销售额的增加而变化。在10%的显著性水平下,t分布的临界值为1.311,计算的t值小于该值,拒绝原假设,意味着R&D强度随销售额的增加而增加。(3)对X2,参数估计值的t统计值为0.05/0.46=1.087,它比在10%的显著性水平下的临界值还小,因此可以认为它对Y在统计上没有显著的影响。3-2.多元线性回归模型的基本假设是什么试说明在证明最小二乘估计
8、量的无偏性和有效性的过程中,哪些基本假设起了作用答:多元线性回归模型的基本假定有:零均值假定、随机项独立同方差假定、解释变量的非随机性假定、解释变量之间不存在线性相关关系假定、随机误差项与服从均值为0方差为人的正态分布假定。在证明最小二乘估计量的无偏性中,利用了解释变量与随机误差项不相关的假定;在有效性的证明中,利用了随机项独立同方差假定。3-3.什么是正规方程组分别用非矩阵形式和矩阵形式写出模型:yi=BoM2x2i+-+kkiui,i=12,的正规方程组。答:含有待估关系估计量的方程组称为正规方程组。正规方程组的非矩阵形式如下:正规方程组的矩阵形式如下:3-4.假设要求你建设一个计量经济模
9、型来说明在学校跑道上慢跑一英里或一英里以上的人数,以便决定是否修建第二条跑道以满足所有的锻炼者。你通过整个学年收集数据,得到两个可能的解释性方程:方程A:Y=125.0-15.0X1-1.OX2+1.5X3R2=0.75方程B:K=123.0-14.0X1+5.5X2-3.7X4方=0.73其中:r某天慢跑者的人数X1一一该天降雨的英寸数X2该天日照的小时数X3该天的最高温度(按华氏温度)X4第二天需交学期论文的班级数请答复以下问题:(1)这两个方程你认为哪个更合理些,为什么(2)为什么用一样的数据去估计一样变量的系数得到不同的符号答:方程B更合理些。原因是:方程B中的参数估计值的符号与现实更
10、接近些,如与日照的小时数同向变化,天长则慢跑的人会多些;与第二天需交学期论文的班级数成反向变化,这一点在学校的跑道模型中是一个合理的解释变量。解释变量的系数说明该变量的单位变化在方程中其他解释变量不变的条件下对被解释变量的影响,在方程A和方程B中由于选择了不同的解释变量,如方程A选择的是“该天的最高温度而方程B选择的是“第二天需交学期论文的班级数,由此造成X?与这两个变量之间的关系不同,所以用一样的数据估计一样的变量得到不同的符号。4.1、 以下哪种情况是异方差性造成的结果(1) O1S估计量是有偏的(2) 通常的t检验不再服从t分布。(3) O1S估计量不再具有最正确线性无偏性。解答:第(2
11、)与(3)种情况4-2.判断以下各题对错,并简单说明理由:1)在存在异方差情况下,普通最小二乘法(O1S)估计量是有偏的和无效的;2)如果存在异方差,通常使用的t检验和F检验是无效的;3)在存在异方差情况下,常用的O1S法总是高估了估计量的标准差;4)如果从O1S回归中估计的残差呈现系统模式,则意味着数据中存在着异方差;5)当存在序列相关时,O1S估计量是有偏的并且也是无效的;6)消除序列相关的一阶差分变换假定自相关系数P必须等于1;7)两个模型,一个是一阶差分形式,一个是水平形式,这两个模型的R2值是不可以直接比较的。8)回归模型中误差项,存在异方差时,O1S估计不再是有效的;9)回归模型中
12、误差项与存在序列相关时,O1S估计不再是无偏的;答:错。当存在异方差情况下,O1S法估计量是无偏的但不具有有效性。对。如果存在异方差,通常使用的t检验和F检验是无效的。错。实际情况可能是高估也可能是低估。对。通过将残差对其相应的观察值描图,了解变量与残差之间是否存在可以观察到的系统模式,就可以判断数据中是否存在异方差。错。当存在序列相关时,O1S法估计量是无偏的但不具有有效性。对。即假设误差项之间是完全正序列相关的,这样广义差分方程就转化为一阶差分方程。对。对。错。仍是无偏的。4. 3、模型Yi=0+iXii+2X2i+ui式中,匕为某公司在第i个地区的销售额;X1i为该地区的总收入;X2,为
13、该公司在该地区投入的广告费用(i=0,1,2,50)O(1)由于不同地区人口规模P,可能影响着该公司在该地区的销售,因此有理由疑心随机误差项Ui是异方差的。假设6依赖于总体P,的容量,请逐步描述你若何对此进展检验。需说明:1)零假设和备择假设;2)要进展的回归;3)要计算的检验统计值及它的分布(包括自由度);4)承受或拒绝零假设的标准。(2)假设b,=R.逐步描述若何求得B1UE并给出理论依据。解答:(1)如果巴依赖于总体A的容量,则随机扰动项的方差衣赖于尸。因此,要进展的回归的一种形式为62=+附+%于是,要检验的零假设HO:%=0,备择假设H1:a10o检验步骤如下:第一步:使用O1S方法
14、估计模型,并保存残差平方项浮;第二步:做常对常数项C和邛的回归第三步:考察估计的参数4的t统计量,它在零假设下服从自由度为2的t分布。第四步:给定显著性水平面0.05(或其他),查相应的自由度为2的t分布的临界值,如果估计的参数。的t统计值大于该临界值,则拒绝同方差的零假设。(2)假设q=。巳时,模型除以P,有:由于V(q)=bE2=。2,所以在该变换模型中可以使用O1S方法,得出B1UE估计值。方法是对匕关于1/甘、X1JPXzJE做回归,不包括常数项。4.4、以某地区22年的年度数据估计了如下工业就业回归方程(-0.56)(2.3)(-1.7)(5.8)式中,Y为总就业量;X1为总收入;X
15、2为平均月工资率;X3为地方政府的总支出。(1)试证明:一阶自相关的DW检验是无定论的。(2)逐步描述若何使用1M检验解答:(1)由于样本容量n=22,解释变量个数为k=3,在5%在显著性水平下,相应的上下临界值为4=1.664、4=1.503。由于DW=I.147位于这两个值之间,所以DW检验是无定论的。(2)进展1M检验:第一步,做Y关于常数项、InX1、1nX2和1nX3的回归并保存残差自;第二步,做自关于常数项、InX1、1nX2和MX3和a的回归并计算A?;第三步,计算检验统计值(n-1)斤=210.996=20.916;第四步,由于在不存在一阶序列相关的零假设下(n-1)R2呈自由度为1的/分布。在5%的显著性水平下,该分布的相应临界值为3.841。由于20.9163.841,因此拒绝零假设,意味着原模型随机扰动项存在一阶序列相关。4-5.消费模型:yta0+a1x11+a2x21+