电机噪声分析与控制.docx
《电机噪声分析与控制.docx》由会员分享,可在线阅读,更多相关《电机噪声分析与控制.docx(5页珍藏版)》请在第一文库网上搜索。
1、电机噪声主要来自三个方面:空气噪声、机械噪声和电磁噪声,但有时也会将电路内部噪声列入噪声源之一。电路内部噪声主要来自电路自励、电源哼声以及电路元件中的电子流起伏变化和自由电子的热运动。1 .空气噪声空气噪声主要由于风扇转动,使空气流动、撞击、摩擦而产生。噪声大小决定于风扇大小、形状、电机转速高低和风阻风路等情况。空气噪声的基本频率v=60(H)其中,N风扇叶片数;n电机转速。风扇直径越大,噪声越大,减小风扇直径10%,可以减小噪声2-3dBc但随之冷量也会减少。当风叶边缘与通风室的间隙过小,就会产生笛声(似吹笛声)。如果风叶形状与风扇的结构不合理,造成涡流,同样也会产生噪声。由于风扇刚度不够,
2、受气流撞击时发生振动,也会增加噪声。此外,转于有凸出部分,也会引起噪声。2 .机械噪声空气噪声主要由于风扇转动,使空气流动、撞击、摩擦而产生。噪声大小决定于风扇大小、形状、电机转速高低和风阻风路等情况。空气噪声的基本频率j=60(Hz)则滚珠的旋转频率Jbb=(1/dr)-力/60(HZ)式中:dr一一滚珠直径(mm)d1轴承内圈滚道的直径(mm)d2轴承外圈滚道的直径(mm)保持架的旋转频率其中,N风扇叶片数;n电机转速(RPM)O而轴承内外圈滚道中的波纹、凹坑、超糙度是引起噪声的主要原因。试验表明,噪声声压级与滚动面的波纹高度和波纹数的乘积成正比。此外,径向游隙的大小,也影响噪声,减小径向
3、游隙,可降低噪声,但是径向游隙小的轴承要求配用在两轴承室同心度高的机壳和端盖,并且对转子同轴度的要求提高。同时润滑脂质量的优劣也是影响噪声的主要原因。噪声与润滑脂的粘度有关,试验表明,噪声随粘度增大而减小,但粘变增大到一定数值后,噪声反而增大,这是因为油膜对振动有援冲作用,粘度大、噪声低,但当粘度过大,转动时出现搅拌声。安装误差对轴承噪声的影响。轴承的安装误差超过某一临界值会使轴承噪声急剧增大,而临界角随轴承径向游隙减小而减小。图一表示某单列内心轴承在不同径向游隙时安装误差角对噪声的关系。3 .电磁噪声作用在电机定、转子空气隙中的交变电磁力会使电机定转子产生振动及噪声。由于气隙磁场不仅有基波而
4、且还有一系列高次谐波存在,这些磁场相互作用将产生周期性的作用力,基波及高次谐波电磁力均会引起振动及噪声。电磁声频率分布大多在100-4000Hz之间。振动及噪声强度的大小与电磁力的大小和定子、转子刚度有关。当激发振动的电磁力与振动的零部件的自振频率相吻合时,将会产生共振,振动及噪声也将显著增加。电磁力有径向分量和切向分量,电磁力径向分量在引起电机振动及噪声方面起主要作用,它使定子铁心产生径向振动,径向振动产生的噪声为电机电磁噪声的主要成分。在采用单数槽转子冲片时,槽致噪声成为电磁噪声的最主要部分。电机运行过程中,单数槽的转子铁芯周期性地受到单边磁拉力的变化所产生的,其原因可通过图一来解释。在图
5、(a)中,上磁极极弧下覆盖三个转子槽,而下磁极极弧只覆盖两个转子槽,此时上部磁拉力大,下部磁拉力小,使定子铁芯有向上移动的趋势。当转子转动半个槽距后,则如图(b)所示,此时下磁极极弧覆盖了三个转子槽,而上磁极极弦只覆盖了两个转子槽,此时的磁拉力情况起了变化,下部磁拉力大,上部磁拉力小,因此定子铁芯有向下移动的趋势。所以在转子旋转过程中,定子铁芯产生周期性的上下振动。同理,转子受到了周期性变化的单边磁拉力,从而引起转子振动。采用双数槽转子时,不会发生上述情况,但转子旋转时槽位变化,在气隙中造成脉振磁场,也可能引起振动。按照上面分析,所产生的电磁噪声频率j=Z60(Hz)式中:Z转子槽数在电磁噪声
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电机 噪声 分析 控制