2018-2019概率论与数理统计期末试题2(含答案).docx
《2018-2019概率论与数理统计期末试题2(含答案).docx》由会员分享,可在线阅读,更多相关《2018-2019概率论与数理统计期末试题2(含答案).docx(18页珍藏版)》请在第一文库网上搜索。
1、课程编号:100172003北京理工大学2018-2019学年第二学期2017级概率与数理统计试题(A卷)Arm(8) = 2.3060, (9) = 1.833 f ms(9)= 疣 95(8) = 2.733 ,兄 95(9)= 3.325 ,2.2622 ,0(2.5)=0.994, 0(1.5)=0.933, 0(2.33) = 0.99, 0(1,96)=0.975, 0(1.64)=0.95,/oo5(8)=1.8595,兄25 (9)=19.023 ,必.。5(8) =M.975(8) = 218,兄.975(9) = 2.700 蠲 25(8)=17.535 ,备 5(9尸 1
2、6.919一、填空题(10分)得分1. 一名射手连续向一目标射击三次,事件4表示射手第i次击中目标(村1,2,3),则不顽巩 表示的含义是2. 设随机变量X的分布函数满足F (x) =a-e-x0,则c = 3. 如果(XI)服从二维正态分布,则其边缘分布 (一定是或不一定是:正态分布.4.XR(0,0.5),PN(0,0.5),且X与 Y相互独立,则 5. 设随机变6. 设不,入2, 一 ,羽,是独立同分布的随机变量南菊,限的期望E 施=与方差量X服从几何分布,期望为4,则户妇)=1 nD(XQ = cFO,k= 1,2,则丫 =,无依概率收敛至U=i变量P (XZ)%P(X 1)=7 .A
3、8 .某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数.则被,盗索赔户不少于14户且不多于30户的概率近似为9 .设入,卷,一为总体阿子)的一案样本住民b0未知,彳,$2分别是样本均值和样本方差,贝帅的置信水平为1,的置信区间为10 .设总体W (/A42) ,X1,.T16是总体蹄样本值,已知假设Ho: /0 .在显著性=0, HI:水平0.01 T的拒绝域是1叙述两个事件互斥和独立的关系.得分2.为了防止意外,某矿内同时设有两种报警系统甲和乙,每种系统单独使用时,系统甲有效的概率为0.92,系统乙有效的概率为0.9
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 概率论 数理统计 期末 试题 答案