第01讲 向量概念 试卷及答案.docx
《第01讲 向量概念 试卷及答案.docx》由会员分享,可在线阅读,更多相关《第01讲 向量概念 试卷及答案.docx(18页珍藏版)》请在第一文库网上搜索。
1、第O1讲向量概念课程标准课标解读1通过对力、速度、位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义。2.理解平面向量的几何表示和基本要素。1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别与联系,掌握向量的概念.2.在认真学习的基础上,理解零向量、单位向量、平行向量、共线向量、相等向量、向量的模以及向量夹角等概念,会辨识图形中这些相关的概念.学会向量的表示方法.颤知识精讲言、知识点01向量的概念及表示1向量:既有又有的量叫做;向量的大小叫做向量的(或)2 .向量表示方法:向量AB或G;模IAB1或.3 .零向量:等于的向量,方向是.,记作0.4
2、 .单位向量:等于个单位的向量,常用e表示.5 .非零向量0的单位向量是Ia1【即学即练1】给出下列说法:零向量是没有方向的;零向量的长度为0;零向量的方向是任意的:单位向量的模都相等.其中正确的有()A.1个B.2个C.3个D.4个;,知识点02向量间的关系1 .平行向量:方向或的向量,记为:7庇。2 .共线向量:任意一组向量都可以平移到一条直线上,因此向量乂称为向量。a与b共线可记为a=b;3 .O与任一向量或.4 .相等向量:相等且相同的向量,记作5 .相反向量:长度且方向的向量,记作=.6 .向量间的夹角:对于两个向量Q与,在平面内任取一点0,作次=3;OB=biNAOB=bHc,则c
3、;若两个模相等的向量互相平行,则这两个向量相等;若a=b,b=c,则=c,其中正确的是(填序号)7.如图,。为正方形A8CE的两条对角线的交点,四边形OAEO和四边形Oa归都是正方形,在图中所示的向量中.(1)分别写出与4。、Bo相等的向量;(2)写出与A。共线的向量;(3)写出与A。的模相等的向量;(4)写出与A。的夹角为90的向量;(5)向量A。与C。是否相等?题组C培优拔尖练1 .给出下列命题:两个具有共同终点的向量,一定是共线向量;若AB,C,。是不共线的四点,则而=Oe是四边形ABCO为平行四边形的充要条件;若3与B同向,且忖咽,则九为实数,若4,则与共线.其中假命题的个数为()A.
4、1B.2C. 3D.42 .下列命题中,正确的是()A.若IaI=IbI,则=6或a=-bB.若b,则Z?C.若=b,则bD.若IaI=。,则=03 .下列说法正确的个数为()面积、压强、速度、位移这些物理量都是向量零向量没有方向向量的模一定是正数非零向量的单位向量是唯一的A.OB.1C.2D.34 .(多选)下面的命题正确的有()A,方向相反的两个非零向量一定共线B.单位向量都相等C.若,b满足.闻且与同向,贝。6D. “若A、B、C、。是不共线的四点,且A8=OCo四边形ABCD是平行四边形”5 .下列关于向量的命题,序号正确的是.零向量平行于任意向量;对于非零向量。力,若ab,则4=6:
5、对于非零向量出力,若=6,则/力;对于非零向量若b则与b所在直线一定重合.6 .下列说法正确的是(写序号).若AB与CO共线,则点A、B、C、。共线;四边形48C。为平行四边形,则AB=C。;若a=b,b=c,贝IJQ=c;四边形ABeD中,AB=OC,AB=AOI,则四边形ACO为正方形.第O1讲向量概念课程标准课标解读1 .通过对力、速度、位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义。2 .理解平面向量的几何表示和基本要素。1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别与联系,掌握向量的概念.2.在认真学习的基础上,理解零向量、单位
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第01讲 向量概念 试卷及答案 01 向量 概念 试卷 答案