《生理学重点复习资料全.docx》由会员分享,可在线阅读,更多相关《生理学重点复习资料全.docx(62页珍藏版)》请在第一文库网上搜索。
1、给你们的生理复习资料考纲要求1、机体与环境的关系:刺激与反应,兴奋与抑制,兴奋性和阈。2、稳态的概念,内环境相对恒定的重要意义。3、神经调节、体液调节和自身调节的生理意义和功能。一、生命活动的基本特征新陈代谢、兴奋性、生殖。I、新陈代谢:是指机体与环境之间不断进行物质交换和能量交换,以实现自我更新的过程。包括合成代谢和分解代谢.2、兴奋性:指可兴奋组织或细胞受到特定刺激时产生动作电位的能力或特性。而刺激是指能引起组织细胞发生反应的各种内外环境的变化。刺激引起组织兴奋的条件:刺激的强度、刺激的持续时间,以及刺激强度对时间的变化率,这三个参数必须达到某个最小值。在其它条件不变情况下,引起组织兴奋所
2、需刺激强度与刺激持续时间呈反变关系。衡量组织兴奋性大小的较好指标为:阈值。阈值:刚能引起可兴奋组织、细胞去极化并达到引发动作电位的最小刺激强度。3、生殖:生物体生长发育到一定阶段,能够产生与自己相似的个体,这种功能称为生殖。生殖功能对种群的繁衍是必需的,因此被视为生命活动的基本特征之一。二、生命活动与环境的关系对多细胞机体而言,整体所处的环境称外环境,而构成机体的细胞所处的环境称为内环境。内、外环境与生命活动相互作用、相互影响。当机体受到刺激时,机体内部代谢和外部活动,将会发生相应的改变,这种变化称为反应。反应有兴奋和抑制两种形式。三、人体功能活动的调节机制机体内存在三种调节机制:神经调节、体
3、液调节、自身调节。I、神经调节:是机体功能的主要调节方式。调节特点:反应速度快、作用持续时间短、作用部位准确。基本调节方式:反射。反射活动的结构基础是反射弧,由感受器、传入神经、反射中枢、传出神经和效应器五个部分组成。反射与反应最根本的区别在于反射活动需中枢神经系统参与。2、体液调节:发挥调节作用的物质主要是激素。激素由内分泌细胞分泌后可以进入血液循环发挥长距离调节作用,也可以在局部的组织液内扩散,改变附近的组织细胞的功能状态,这称为旁分泌。调节特点:作用缓慢、持续时间长、作用部位广泛。(这些特点都是相对于神经调节而言的。)神经一体液调节:内分泌细胞直接感受内环境中某种理化因素的变化,直接作出
4、相应的反应。3、自身调节:是指内外环境变化时组织、细胞不依赖于神经或体液调节而产生的适应性反应。举例:(1)心室肌的收缩力随前负荷变化而变化,从而调节每搏输出量的特点是自身调节,故称为异长自身调节。(2)全身血压在一定范围内变化时,肾血流量维持不变的特点是自身调节。四、生理功能的反馈调控:正反馈和负反馈负反馈:反馈信息与控制信息的作用方向相反,因而可以纠正控制信息的效应。负反馈调节的主要意义在于维持机体内环境的稔态,在负反馈情况时,反馈控制系统平时处于稳定状态。正反馈:反馈信息不是制约控制部分的活动,而是促进与加强控制部分的活动。正反馈的意义在于使生理过程不断加强,直至最终完成生理功能,在正反
5、馈情况时,反馈控制系统处于再生状态。生命活动中常见的正反馈有:排便、排尿、射精、分娩、血液凝固等。五、内环境与稳态内环境即细胞外液(包括血浆,组织液,淋巴液,各种腔室液等),是细胞直接生活的液体环境。内环境直接为细胞提供必要的物理和化学条件、营养物质,并接受来自细胞的代谢尾产物。内环境最基本的特点是稳态。稳态是内环境处于相对稔定(动态平衡)的一种状态,是内环境理化因素、各种物质浓度的相对恒定,这种恒定是在神经、体液等因素的调节下实现。稳态的维持主要依赖负反馈。稳态是内环境的相对稳定状态,而不是绝对稳定。细胞的基本功能。考纲要求1细胞膜的物质转运。2.细胞的生物电现象以及细胞兴奋的产生和传导的原
6、理。3.神经.骨骼肌接头的兴奋传递。一、细胞膜的基本结构一一液态镶嵌模型该模型的基本内容:以液态脂质双分子层为基架,其中镶嵌着具有不同生理功能的蛋白质分子,并连有一些寡糖和多糖链。特点:(1)质膜不是静止的,而是动态的、流动的。(2)细胞膜两侧是不对称的,因为两侧膜蛋白存在差异,同时两侧的脂类分子也不完全相同。(3)细胞膜上相连的糖链主要发挥细胞间“识别”的作用。(4)膜蛋白有多种不同的功能,如发挥转动物质作用的载体蛋白、通道蛋白、离子泵等,这些膜蛋白主要以螺旋或球形蛋白质的形式存在,并且以多种不同形式镶嵌在脂质双分子层中,如靠近膜的内侧面、外侧面、贯穿整个脂质双层三种形式均有。(5)细胞膜糖
7、类多数裸露在膜的外侧,可以作为它们所在细胞或它们所结合的蛋白质的特异性标志。二、细胞膜物质转运功能物质进出细胞必须通过细胞膜,细胞膜的特殊结构决定了不同物质通过细胞的难易。例如,细胞膜的基架是双层脂质分子,其间不存在大的空隙,因此,仅有能溶于脂类的小分子物质可以自由通过细胞膜,而细胞膜对物质团块的吞吐作用则是细胞膜具有流动性决定的。不溶于脂类的物质,进出细胞必须依赖细胞膜上特殊膜蛋白的帮助。物质通过细胞膜的转运有以下几种形式:(一)被动转运:包括单纯扩散和易化扩散两种形式。1 .是指小分子脂溶性物质由高浓度的一侧通过细胞膜向低浓度的一侧转运的过程。跨膜扩散的最取决于膜两侧的物质浓度梯度和膜对该
8、物质的通透性。单纯扩散在物质转运的当时是不耗能的,其能量来自高浓度本身包含的势能。2 .易化扩散:指非脂溶性小分子物质在特殊膜蛋白的协助下,由高浓度的一侧通过细胞膜向低浓度的一侧移动的过程。参与易化扩散的膜蛋白有载体蛋白质和通道蛋白质。以载体为中介的易化扩散特点如下:(1)竞争性抑制;(2)饱和现象;(3)结构特异性。以通道为中介的易化扩散特点如下:(1)相对特异性;(2)无饱和现象;(3)通道有“开放”和“关闭”两种不同的机能状态。(二)主动转运,包括原发性主动转运和继发性主动转运。主动转运是指细胞消耗能量将物质由膜的低浓度一侧向高浓度的侧转运的过程。主动转运的特点是:(1)在物质转运过程中
9、,细胞要消耗能量;(2)物质转运是逆电-化学梯度进行;(3)转运的为小分子物质;(4)原发性主动转运主要是通过离子泵转运离子,继发性主动转运是指依赖离子泵转运而储备的势能从而完成其他物质的逆浓度的跨膜转运。最常见的离子泵转运为细胞膜上的钠泵(Na+-K+泵),其生理作用和特点如下:(I)钠泵是由一个催化亚单位和一个调节亚单位构成的细胞膜内在蛋白,催化亚单位有与Na+、ATP结合点,具有ATP酶的活性。(2)其作用是逆浓度差将细胞内的Na+移出膜外,同时将细胞外的K+移入膜内。(3)与静息电位的维持有关。(4)建立离子势能贮备:分解的一个ATP将3个Na+移出膜外,同时将2个K+移入膜内,这样建
10、立起离子势能贮备,参与多种生理功能和维持细胞电位稔定。(5)可使神经、肌肉组织具有兴奋性的离子基础。(三)出胞和入胞作用。(均为耗能过程)出胞是指某些大分子物质或物质团块由细胞排出的过程,主要见于细胞的分泌活动。入胞则指细胞外的某些物质团块进入细胞的过程。因特异性分子与细胞膜外的受体结合并在该处引起的入胞作用称为受体介导式入胞。记忆要点:(1)小分子脂溶性物质可以自由通过脂质双分子层,因此,可以在细胞两侧自由扩散,扩散的方向决定于两侧的浓度,它总是从浓度高一侧向浓度低一侧扩散,这种转运方式称单纯扩散。正常体液因子中仅有02、Co2、NH3以这种方式跨膜转运,另外,某些小分子药物可以通过单纯扩散
11、转运。(2)非脂溶性小分子物质从浓度高向浓度低处转运时不需消耗能量,属于被动转运,但转运依赖细胞膜上特殊结构的“帮助”,因此,可以把易化扩散理解成帮助扩散。什么结构发挥“帮助”作用呢?一细胞膜蛋白,它既可以作为载体将物质从浓度高处“背”向浓度低处,也可以作为通道,它开放时允许物质通过,它关闭时不允许物质通过。体液中的离子物质是通过通道转运的,而一些有机小分子物质,例如葡萄糖、氨基酸等则依赖载体转运。至于载体与通道转运各有何特点,只需掌握载体转运的特异性较高,存在竞争性抑制现象。(3)非脂溶性小分子物质从浓度低浓度高处转运时需要消耗能量,称为主动转运。体液中的一些离子,如Na+、K+、Ca2+、
12、H+的主动转运依靠细胞膜上相应的离子泵完成。离子泵是一类特殊的膜蛋白,它有相应离子的结合位点,又具有ATP酶的活性,可分解ATP释放能量,并利用能量供自身转运离子,所以离子泵完成的转运称为原发性主动转运。体液中某些小分子有机物,如葡萄糖、氨基酸的主动转运属于继发性主动转运,它依赖离子泵转运相应离子后形成细胞内外的离子浓度差,这时离子从高浓度向低浓度一侧易化扩散的同时将有机小分子从低浓度一侧耦联到高浓度一侧。肠上皮细胞、肾小管上皮细胞吸收葡萄糖属于这种继发性主动转运。(4)出胞和入胞作用是大分子物质或物质团块出入细胞的方式。内分泌细胞分泌激素、神经细胞分泌递质属于出胞作用;上皮细胞、免疫细胞吞噬
13、异物属于入胞作用。三、细胞膜的受体功能1 .膜受体是镶嵌在细胞膜上的蛋白质,多为糖蛋白,也有脂蛋白或糖脂蛋白。不同受体的结构不完全相同。2 .膜受体结合的特征:特异性:饱和性;可逆性。四、细胞的生物电现象生物电的表现形式:静息电位一一所有细胞在安静时均存在,不同的细胞其静息电位值不同。动作电位可兴奋细胞受到阈或阈上刺激时产生。局部电位一一所有细胞受到阈下刺激时产生。1 .静息电位:细胞处于安静状态下(未受刺激时)膜内外的电位差。静息电位表现为膜个相对为正而膜内相对为负。(1)形成条件:安静时细胞膜两侧存在离子浓度差(离子不均匀分布)。安静时细胞膜主要对K+通透。也就是说,细胞未受刺激时,膜上离
14、子通道中主要是K+通道开放,允许K+由细胞内流向细胞外,而不允许Na+、Ca2+由细胞外流入细胞内。(2)形成机制:K+外流的平衡电位即静息电位,静息电位形成过程不消耗能量。(3)特征:静息电位是K+外流形成的膜两侧稳定的电位差。只要细胞未受刺激、生理条件不变,这种电位差持续存在,而动作电位则是一种变化电位。细胞处于静息电位时,膜内电位较膜外电位为负,这种膜内为负,膜外为正的状态称为极化状态。而膜内负电位减少或增大,分别称为去极化和超级化。细胞先发生去极化,再向安静时的极化状态恢复称为复极化。2 .动作电位:(1)概念:可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播
15、的细胞膜两侧的电变化。动作电位的主要成份是峰电位。(2)形成条件:细胞膜两侧存在离子浓度差,细胞膜内K+浓度高于细胞膜外,而细胞外Na+、Ca2+、C1高于细胞内,这种浓度差的维持依靠离子泵的主动转运。(主要是Na+K+泵的转运)。细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许K+通透,而去极化到阈电位水平时又主要允许Na+通透。可兴奋组织或细胞受阈上刺激。(3)形成过程:2阈刺激一细胞部分去极化-Na+少量内流一去极化至阈电位水平-Na+内流与去极化形成正反馈(Na+爆发性内流)T达到Na+平衡电位(膜内为正膜外为负)一形成动作电位上升支。膜去极化达一定电位水平一Na+内流停止、K+迅速外流一形成动作电位下降支。(4)形成机制:动作电位上升支一一Na+内流所致。动作电位的幅度决定于细胞内外的Na+浓度差,细胞外液Na+浓度降低动作电位幅度也相应降低,而阻断Na+通道(河豚毒)则能阻碍动作电位的产生。动作电位下降支一K+外流所致。(5)动作电位特征:产生和传播都是“全或无”式的。传播的方式为局部电流,传播速度与细胞直径成正比。动作电位是一种快速,可逆的电变化,产生动作电位的细胞膜将经历一系列兴奋性的变化:绝对不应期一一相对不应期一一超常期一一低常期,它们与动作电位各时期的对应关系是:峰电位一一绝对不应期;负后电位一相对不应期和超常期;正后电位一一低常期。