2023骨质疏松症的人工智能管理工具全文.docx
《2023骨质疏松症的人工智能管理工具全文.docx》由会员分享,可在线阅读,更多相关《2023骨质疏松症的人工智能管理工具全文.docx(17页珍藏版)》请在第一文库网上搜索。
1、2023骨质疏松症的人工智能管理工具(全文)骨质疏松症是一种骨量减少和微结构退化导致骨脆性增加和骨折风险增加的疾病。通常,骨质疏松性骨折发生在脊柱、骸部、前臂远端和肱骨近端,但其他骨骼部位也可能受到影响。骨质疏松症治疗的主要挑战之一在于,尽管手术诊断是基于双能X线骨密度仪测量的骨矿物质密度(BMD),但大多数骨折发生在非骨质疏松症BMD值下。此外,无论潜在创伤的严重程度如何,骨质疏松症通常仍未诊断。在世界范围内的主要指南中,对于何时治疗、治疗谁以及使用哪种药物只有较弱的共识。在这种背景下,人工智能(AI)开发人员在过去几年中付出了越来越多的努力来支持和改善这种疾病的管理。许多这些新开发的人工智
2、能算法性能已被证明至少与内科专家相当,甚至更好。然而,即使乍看之下研究结果似乎很有希望,也应始终谨慎解读。使用不适当的参考标准或选择在临床实践中几乎没有或没有价值的变量是经常发现的局限性。因此,在人工智能这一领域显然需要高质量的临床研究。例如,这可以通过建立一个考虑所有相关利益攸关方的国际认可的”最佳实践框架”来实现。内分泌疾病未来篇I2023骨质疏松症的人工智能管理工具骨质疏松症被定义为一种全身性骨骼疾病,其特征为低骨量和骨组织的微结构退化,导致骨脆性和骨折易感性增加(AmJMed.1991;90(1):107-110)根据世界卫生组织(WHO)推荐的标准,骨质疏松症的手术诊断基于通过髓关节
3、、脊柱或所谓的挠骨三分之一部位(one-thirdradius)(Bone.2017;104:39-43;JC1inDensitom.2019;22(4):453-471)0因此,如果个体的BMD等于或小于健康青年平均正常BMD值以下的2.5个标准差(即T评分2.5),则可诊断为骨质疏松症。然而,这种方法的主要局限性之一在于,大多数骨折发生在T评分-1.0至-2.5(即骨质减少BMD)或甚至高于-1.0(即正常BMD),这损害了这种金标准方法的敏感性及其作为筛查工具的潜在作用(BMJ.1996;312(7041):1254-1259)o脊柱(椎骨)、骸部(股骨近端)、肩部(肱骨近端)和腕部(前
4、臂远端、横骨远端)骨折已显示与后续骨折风险增加、生活质量下降、残疾以及除前臂远端骨折外死亡率增加(QUa11ifeRes.2018;27(3):707-716;JBoneMinerRes.2000;15(4):721-739;OsteoporosInt2017;28(3):775-780;JC1inEndocrino1Metab.2018;103(9):3205-3214)。因此,也称其为严重骨质疏松性骨折。据估计,50岁女性遭受严重骨质疏松性骨折的平均终生风险接近50%,男性接近22%,在全球范围内,骨质疏松症每年导致约900万例骨折,每3秒钟就会导致T列骨质疏松性骨折(OSteoPorOS
5、Int2005;16(Supp12):S3-S7;OsteoporosInt.2006;17(12):1726-1733)o当前意义上的人工智能最有可能是在20世纪50年代中期创造的,当时一群数学家、认知科学家和计算机科学家在美国Dartmouth学院召开了一次会议。虽然会议本身没有达到与会者的预期,但它仍然可以被认为是随后人工智能研究热潮的最初火花。然而,这种繁荣预期至少被两次研究衰退所打断,有时也被称为人工智能研究的冬天/wintersofAIresearch,第一次持续于20世纪70年代中期至后期,第二次持续于20世纪80年代末至90年代初。在这两个冬天之前,几乎没有令人鼓舞的研究结果,
6、这反过来导致与人工智能相关的研究项目资金的减少。幸运的是,随着计算能力近乎指数级的增长,研究和资金在那之后又开始回升。1997年,一台名为IBM深蓝(IBMDeepB1ue)的电脑击败了世界象棋冠军加里卡斯帕罗夫,2011年,另一台名为WatSOn的IBM电脑在数百万电视观众面前击败了Jeopardy游戏中有史以来最成功的人类玩家中的两个。毫无疑问,这些以及随后在人工智能发展中的许多亮点,已经形成了人类医学中基于人工智能的研究努力的完美基础。事实上,在过去的十年里,人类医学的许多领域都取得了长足的进步(NatMed.2019;25(1):44-56;NatMed.2023;28(1):31-3
7、8)o一般而言,医学上的人工智能可以分为虚拟和物理两种亚型,前者包括如成像解决方案和治疗决策支持工具,后者包括如智能假体和机器人辅助手术(MetabC1inExp.2017;69S:S36-S40)o在骨质疏松症的管理方面,虚拟AI亚型目前发挥着主要作用,其解决方案可用于(或正在开发中)(JBoneMinerRes.2023;36:833-851)(图D:促进诊断骨折风险评估骨折检测骨质量评估治疗决策。图1骨质疏松症管理中,当前可用人工智能解决方案选择图片临床医学中人工智能的一些基础知识非常简单,考虑到目前还没有国际认可的定义,人工智能构成了一个将计算能力与数据集(理想情况下是大数据)相结合的
8、系统,从而能够解决问题。人工智能的一个典型分支是机器学习,它使用各种算法从数据中学习,因此明显不同于(人类)试图显式编写特定计算机程序来完成特定任务(BishopCM1ed.PatternRecognitionandMachine1earning.Springer;2006)o机器学习(M1)可以基于不同的学习方法,其中最重要的是监督学习和非监督学习(CUrrGenomics.2023;22(4):291-300)o在过去的十年里,监督式M1被证明是最有效的,因此已经成为人工智能支持的医疗应用的主要支柱。为了训练一个基于监督学习的系统,机器必须被输入已经可用和足够的数据,因为这些输入数据的质量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 骨质 疏松 人工智能 管理工具 全文