水下光通信技术的研究与展望.docx
《水下光通信技术的研究与展望.docx》由会员分享,可在线阅读,更多相关《水下光通信技术的研究与展望.docx(13页珍藏版)》请在第一文库网上搜索。
1、水下光通信技术的研究与展望随着通信技术的快速发展,第五代移动通信(5G)的商业模式大规模普及的同时也使为数不多的频谱带宽几乎消耗殆尽,6G技术的发展势必要寻求新的频谱途径。5G信号因其自身技术的限制和频谱的不足难以满足空天海地一体化的新型全场景覆盖通信网络的需要,6G技术为了弥补这些不足,实现一体化的新型通信网络需要寻找新的无线通信方式来补充传统单一的无线通信模式。可见光通信相较于现有的通信技术,其最大的优点是频谱无需授权,有着极大的使用自由度。可见光通信拥有高频段的频谱(400-800THz),适用于高速通信技术,且其安全性和保密性有着独特的优势。可见光通信没有传统电磁通信所带来的电磁污染和
2、射频辐射,也不会受到电磁干扰。这些优势使得可见光通信技术成为了近年来各国争相研究的对象。本文将首先介绍光通信技术的发展,着重介绍水下可见光通信技术的发展以及可见光通信的应用场景与所面对的挑战。然后基于现阶段的研究提出一种成熟的水下可见光通信系统。一、传统水下通信方式简析随着人类通信技术的发展,距离空天海地一体化的全方位通信目标的实现也越来越近,但水下通信依旧是现在难以解决的难题。在现有的通信网络中,应用于海洋、水下场景的智能装备主要使用射频信号、声波等无线技术,或使用有线网络进行通信。团水下有线通信水下有线通信多用于2个大规模水上平台与平台之间,通过铺设水下光缆的方式进行通信,如连接各国的大规
3、模水下光缆网络。有线通信可以保证高速的数据传输,每秒可以传IOOGbit以上,但水下光缆本身的安全性很难得到很好的保障且被损坏后很难修补。水下有线通信笨重,成本高,无法满足未来6G时代水下通信的需求。团水下射频信号通信海水对射频信号有非常强的屏蔽作用,射频信号穿透海水的能力与频率直接相关,只有低频率的射频信号如甚低频(330kHz)才能在海水中进行有限的传播。潜艇等水下设备通常使用超低频和甚低频进行有限的通信,通信速率只有300bs左右。射频信号在水中传输时的趋肤效应,传输距离受限,仅仅适用于近距离的水下通信。因此,无法完成未来远距离、高速率的水下信息传输任务。团水下声波通信声波较早用于水下探
4、测和水下通信,但由于声波的隐蔽性较弱,主动式声呐设备的声波很容易被对方捕捉而暴露目标,所以水下军事设备不会主动使用声呐进行通信。水声通信的频带带宽被限制在20kHz以内,且由于多径传播会导致延迟增加,产生数据的相互干扰,大大降低了通信速率,传输速率只有几十kb/s。这些严重的延迟和串扰影响显然无法满足日益增长的水下通信需求。二、UOWC技术发展介绍由于传统的水下通信技术无法满足未来6G时代高速率、远距离通信的需求,水下可见光通信可以弥补射频通信水下传输距离短的难题,能够克服声波通信速率低、损耗严重等缺点,具有广阔的发展潜力,成为现在水下通信的研究热点。图1是水下光通信的在未来军事领域的典型应用
5、图,由光来构建新型的立体通信网络。该网络相较于传统信息网络拥有保密性强、稳定性高等优点,不易被敌方破解。海底光缆中继站可以直接与潜艇进行交流沟通,提高了水下潜航设备的通信能力。还可以通过放置浮标作为中继的方式,提高通信距离,达到完善通信网络的目的。图1水下光通信典型应用示意图光波的带宽很宽,由于温度波动、散射、色散等影响,加之光学频段严重吸水和悬浮粒子的强散射,这使得水下光通信仅限于短距离。但水下EM光谱的蓝绿色波长有一个相对较低的衰减光学窗口,早在1966年,UniversityofCaIifornia,SantaBarbara的GI1BERT、JERNIGAN等人就进行了蓝绿激光水下的偏振
6、、散射和相干特性的相应实验,成功证明了水下蓝绿光通信的可能性。水下可见光通信通过光源来分类,主要分为水下蓝绿激光通信与基于蓝绿光1ED的水下可见光通信。激光器功率大,激光作为水下光通信的媒介可以实现高速率和远距离的传输,但存在相干闪烁等问题,且通信必须要精确对准,实用性差,在实际的应用之中有很大的困难。而基于蓝绿1ED的水下光通信,采用非相干光,集照明与通信于一体,无需严格对准,大大增加了水下光通信的便利性和可行性。团水下激光通信的发展水下激光的发展最先发展于军事领域。20世纪80年代,美国开始进行蓝绿激光对潜战略的研究,并于1981年首次使用机载激光器与位于水下300m深度的潜艇进行了通信实
7、验。2001年美国研制出了激光二极管后,激光通信的发展迈出了飞跃性的一步。2015年,KingAbdu11ahUniversityofScienceandTechno1ogy的研究团队使用450nm的激光通过正交频分复用进行调制在5.4m的距离上成功实现了高达4.8Gbits的数据速率,且其误码率仅有2.6x10-3,完全满足前向纠错的标准。2017年,浙江大学光通信实验室使用频谱高效的正品频分复用技术,在IOm长度的水下通道实现了9.51Gbs的基于红绿蓝三色光的聚合数据传输,且误码率完全符合前向纠错的标准。这些都表明如今的水下激光通信确实可以达到极高的通信速率,但传输距离上还有待提升。同样
8、是2017年,复旦大学研究团队提出构建了一种基于绿光激光二极管的水下光通信系统,使用NRZ-OOK对其进行调制,已经实现了34.5m的且速率在2.7GbPS的数据传输,该系统预计最大可传输62.7m,速率也可达IGbpso团水下蓝绿光1ED通信的发展蓝绿光水下1ED的光通信起步相对较晚。2014年度诺贝尔物理学奖表彰了物理学家在发明高效节能的蓝光1ED光源方面的贡献。他们在高质量的氮化线晶体上制造出了蓝光1ED,此1ED器件具有高的开关响应速度,而正是这种极高的开关响应速度,使得基于1ED器件的光通信技术成为可能。在1993年,中村修二成功将蓝光1ED的亮度大幅度提升,至此蓝光1ED走上了人类
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 水下 光通信 技术 研究 展望