液流电池储能技术研究进展.doc
《液流电池储能技术研究进展.doc》由会员分享,可在线阅读,更多相关《液流电池储能技术研究进展.doc(17页珍藏版)》请在第一文库网上搜索。
1、液流电池储能技术研究进展储能技术是构建以新能源为主体的新型电力系统,实现双碳目标的关键支撑技术。液流电池储能技术具有安全可靠、寿命长、环境友好等优势,成为规模储能的首选技术之一。本文通过对传统液流电池储能技术包括铁铬液流电池储能技术、全钒液流电池储能技术、锌溴液流电池储能技术和液流电池新体系包括基于溴基氧化还原电对的液流电池新体系、醌基液流电池体系、吩嗪基液流电池体系、TEMPO类液流电池体系、紫精类液流电池体系的研究进展进行探讨,综述了各类液流电池储能技术的发展历程及其技术成熟度,着重介绍了各类液流电池储能技术的特点和进一步发展所面临的关键科学问题,重点分析了不同种类的液流电池储能技术实用化
2、进程中的关键技术瓶颈。通过总结分析国内外液流电池储能技术的发展态势,对液流电池储能技术未来发展方向进行了展望。能源是人类文明进步的基础和动力,关系人类生存和发展,关乎国计民生和国家安全,对于促进经济社会发展至关重要。随着社会的发展,人类对能源的需求量日益增加。随着一次能源的大量使用导致碳排放量逐年升高,作为世界上最大的发展中国家,中国于2020年宣布了力争于2030年前二氧化碳排放达到峰值、2060年前实现碳中和的目标愿景。推动能源结构调整与转型和实现可再生能源的规模发展和替代是实现“双碳”目标的关键。可再生能源发电具有不连续、不稳定的特点,大规模并网会对电力系统的安全性、可靠性带来严峻的挑战
3、。储能技术可有效地调控可再生能源发电的不稳定性,实现安全稳定供电。因此,储能技术是构建以新能源为主体的新型电力系统、实现双碳目标的关键支撑技术。在众多储能技术中,液流电池储能技术具有安全可靠、生命周期内性价比高、环境友好、循环寿命长等优点。液流电池是由美国科学家Thaller于1974年提出的一种电化学储能技术,通过电解液中活性物质在电极上发生电化学氧化还原反应来实现电能和化学能的相互转化。自20世纪70年代以来,液流电池的发展跨越了从基础研究到工程应用示范的技术瓶颈,在变革能源生产、转化、运输、存储、消费全产业链中起着举足轻重的作用,为驱动国家清洁低碳、安全高效的能源体系建设提供了关键技术支
4、撑。随着液流电池储能技术水平不断提高,多类储能技术将在不同的应用场景中发挥各自优势,将成为实现我国双碳目标的关键核心技术。本文就液流电池储能技术研究进展、重要成果、存在的问题及挑战等进行陈述分析,结合液流电池储能技术的实用化需求及国内外发展态势,对液流电池储能技术未来发展方向进行了展望。根据正负极电解质溶液中活性电对种类的不同,液流电池可分为铁铬液流电池、锌溴液流电池、全铁液流电池、全钒液流电池等(图1)。根据正负极电解质活性物质的形态,液流电池又可分为液-液型液流电池和沉积型液流电池。电池正、负极氧化态及还原态的活性物质均为可溶于水的溶液状态的液流电池为液-液型液流电池,例如全钒液流电池、多
5、硫化钠/溴液流电池等。沉积型液流电池是指在运行过程中伴有沉积反应发生的液流电池。电极正负极电解质溶液中只有一侧发生沉积反应的液流电池,称为半沉积型液流电池,如锌溴液流电池、锌铁液流电池等;电池正负极电解质溶液都发生沉积反应的液流电池为全沉积型液流电池,如铅酸液流电池、锌锰液流电池等。为实现液流电池储能技术的迭代发展,近年来,一系列不同类型的新体系液流电池储能技术不断涌现。根据活性电对种类的不同,液流电池新体系可以分为无机体系液流电池和有机体系液流电池。无机体系液流电池的正、负极氧化还原电对均为无机物,而有机体系液流电池的正、负极氧化还原电对至少有一个是有机物。与有机液流电池体系相比,无机体系液
6、流电池具有更好的稳定性,但可选择的无机电对种类有限且电位、溶解度等性质较难调控。与无机氧化还原电对不同,有机体系液流电池使用的有机氧化还原电对可以通过分子结构工程设计等方法对分子性质如氧化还原电位、电化学可逆性、稳定性及溶解度等进行调节,从而提高电池能量密度和循环性能,且有机氧化还原电对多是由碳、氢、氧、氮、硫等元素组成,资源丰富且分布广泛。但有机氧化还原电对的稳定性相对较差,在反应过程中容易出现氧化、聚合、分解等不可逆副反应,导致电池容量不可逆衰减。目前,大部分液流电池新体系还处于实验室研发阶段,在实际应用上仍面临诸多挑战。1 铁铬液流电池研究进展早在1949年,Kangro提出了最早的液流
7、电池雏形,通过电化学反应将电能存储于电解液中,采用Cr2(SO4)3作为正负极活性物质,2 mol/L硫酸溶液作为支持电解质,电池电压可达到1.75 V。1974年,美国航空航天局(NASA)的Thaller等提出了第一个真正意义上的液流电池体系:铁铬液流电池体系,采用Fe3+/Fe2+/Cr3+/Cr2+作为正、负极氧化还原电对,硫酸作为支持电解质,电池电压为1.18 V。研究者对铁铬液流电池技术进行了大量的基础性研究,如电极优化及设计、电解液体系优化、催化剂筛选、电池结构设计及优化等,为铁铬液流电池的发展奠定了良好的基础。2019年,国家电投中央研究院自主研发的首个31.25 kW铁铬液流
8、电池电堆“容和一号”成功下线并通过了检漏测试,成为目前全球最大功率的铁铬液流电池电堆;由8台31.25 kW铁铬液流电池电堆构成的国内首个250 kW铁铬液流电池储能示范项目于2020年在沽源战石沟光伏电站投入应用,该系统具备6 h储能时长(1.5 MWh),可有效提高光伏电站能源利用效率,标志着国家电投自主研发的储能技术正式投入应用。尽管如此,长期研究表明,Cr3+/Cr2+负极电对反应动力学慢、析氢副反应严重的两大弱点难以完全克服,随着运行时间的增加,由于正、负极电解质溶液中铁离子和铬离子的微量互串,容易引起正、负极电解质溶液中活性离子交叉污染,造成储能容量的衰减问题;另一方面,由于Cr3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 流电 池储能 技术研究 进展