燃煤耦合污泥发电过程重金属砷和硒迁移转化试验研究.doc
《燃煤耦合污泥发电过程重金属砷和硒迁移转化试验研究.doc》由会员分享,可在线阅读,更多相关《燃煤耦合污泥发电过程重金属砷和硒迁移转化试验研究.doc(11页珍藏版)》请在第一文库网上搜索。
1、燃煤耦合污泥发电过程重金属砷和硒迁移转化试验研究前言:太阳辐城市污水污泥和造纸污泥等有机污泥具有较高挥发分,对其进行焚烧处置可实现其资源化利用。德国大部分的污水污泥通过焚烧法处置,其中约50%掺烧于水泥炉窑和燃煤电厂中。近年来,我国燃煤电厂掺烧污泥技术发展迅速,已逐渐成为有机污泥处置的重要技术路线。有机污泥来源广泛、成分复杂、含水率高,并且其中重金属、砷(As)、硒(Se)和氯(Cl)的含量普遍高于原煤。因此,燃煤耦合污泥发电过程中的重金属、As和Se的迁移和环境排放风险应被关注。先前的实验室内研究和中试试验研究已揭示,煤粉和污泥共燃会引起重金属、As和Se的释放、迁 移和转化行为发生变化。一
2、方面,当污泥中Cl含量较高时,铜(Cu)、镉(Cd)、铬(Cr)、锌(Zn)、镍(Ni)、As和铅(Pb)的挥发比率有可能会增加,因而有可能增加这些元素的大气排放量。另一方面,在煤粉和污泥共燃状态下,Cl、Cu和铁(Fe)含量的增加,会促进单质汞(Hg)氧化为Hg2+(以HgO形态存在),从而有可能减少Hg的大气排放;并且焚烧高含水率污泥会增加烟气湿度,促进重金属氯化物生成氧化物,有利于重金属的大气排放降低。有机污泥的掺烧量和其污染物含量是影响燃煤耦合污泥发电过程重金属排放的最主要因素。理论上,掺烧量的提升将会增加污染物输入量,并改变燃烧状态和烟气成分,从而可能影响重金属、As和Se在炉渣、飞
3、灰、脱硫石膏、脱硫废水和烟气中的分配比率和分配量。余维佳等对某蒸发量为220 t/h的燃煤锅炉掺烧质量分数(下同)11%的污泥时重金属排放情况进行了调查,结果表明,污泥掺烧导致锰(Mn)、Zn、Pb、Cu、As、Cr在炉渣和飞灰中的分配比率降低,使其大气排放比率及排放量明显增加。然而,张宗振等在1 000 MW机组和韩俊刚在300 MW机组上进行的掺烧10%城市污泥试验均表明,掺烧污泥对重金属和As在不同排放物中质量浓度的影响很小。国外关于煤粉锅 炉掺烧污泥对副产品中痕量元素影响的报道很少。mand LE等在12 MW循环流化床锅炉上掺烧16%52%干污泥,结果表明随着污泥掺烧比例的增加,飞灰
4、中重金属含量也明显增加,但并未超过欧盟的排放限值。目前,有关掺烧污泥对电站燃煤锅炉重金属、As和Se排放影响的调查数据十分有限,尚缺乏对环境排放风险的定量化描述与预测。本文在某配置污泥前置干燥炭化装置的燃煤发电系统上,通过采集燃煤系统产生的主要排放物,包括炉渣、飞灰、脱硫石膏、脱硫废水和净烟气,对比研究了纯烧煤和掺烧污泥2种工况条件下重金属和As、Se在炉渣、飞灰和脱硫石膏、脱硫前后水相、大气等排放物中的分配比率与质量浓度,定量预测了掺烧污泥引起的重金属、As和Se排放增加量,为确定污泥掺烧量和污泥中重金属、As和Se的质量浓度限值提供理论依据。1 试验内容1.1 锅炉概况试验在哈尔滨锅炉厂设
5、计制造的某超超临界600 MW机组直流锅炉上进行,锅炉采用型布置、单炉膛、水平浓淡燃烧器,低NOx分级送风燃烧系统,墙式切圆燃烧方式。在540 MW负荷下进行了纯烧煤和掺烧污泥2个工况的试验。掺烧的污泥为造纸厂污泥,其含水率约80%,掺烧量约为燃煤量的1%。污泥掺烧装置使用中国华能集团有限公司研发的前置干燥炭化机,其技术工艺为:抽取高温烟气至干燥炭化装置,污泥在装置内被干燥及研磨,下游的风机将污泥粉送至污泥燃烧器参与锅炉燃烧,整个系统处于密闭和负压状态。污泥掺烧工艺流程和试验样品采集位置如图1所示。1.2 样品采集在2种工况下,分别采集煤粉、飞灰、炉渣、石膏、脱硫前石灰水、脱硫废水和脱硫出口净
6、烟气,各4个平行样,平行样采样时间间隔为23 h。图1 污泥掺烧工艺及采样位置示意采集脱硫前石灰浆液和脱硫废水浆液,静置沉降12 h后取上清液。随机采取2个磨细石灰样品和4个湿污泥样品。固体样品装入聚乙烯塑料密封袋中,脱硫废水装入棕色瓶中,带回实验室,放置在4 冰箱中保存。烟气样品的采集遵照固定污染源排气中颗粒物与气态污染物采样方法(GB/T 161571996)中相关要求执行。烟气中颗粒物的采样装置为崂应3012H型自动烟尘/气测试仪对接1085W型烟尘多功能取样管;颗粒物由石英纤维滤筒捕获;采用等动力抽气模式采样,采样时间为1 h,采样体积大于0.7 m3(标况下,下同)。烟气中气态汞的采
7、样装置为崂应3072型智能双路烟气采样器,采样装置上串联2支各装10 mL吸收液的吸收管,吸收液为 0.1 mol/L高锰酸钾溶液和10 %硫酸溶液的1:1(体积比)混合溶液;采用等速抽气模式采样,流量为0.5 L/min,采样时间为30 min。采集颗粒物样品的石英纤维滤筒装入聚乙烯塑料密封袋中,采集气态汞的吸收液装入棕色瓶中,带回实验室,放置在4 冰箱中保存。2种工况下入炉煤质的工业分析和元素分析见表1,输入输出系统各物质流量见表2。表1 试验期间入炉煤质工业和元素分析表2 2种工况下进出系统质量流量1.3 分析方法固体样品经冷冻干燥后研磨,使其粒径小于 0.15 mm,充分混匀。称取0.
8、1 g(精确至0.000 1 g)处理后固体样品,置于消解罐中,加入1 mL盐酸,4 mL硝酸,1 mL氢氟酸和1 mL双氧水后,置于微波消解仪中消解。消解后冷却至室温,将消解液放在赶酸仪上,加入1 mL高氯酸,100 敞口赶酸至样品冒白烟,样品近干,用去离子水定容并过滤膜。分析其中的重金属(10种重金属为铬Cr、Ni、Hg、Cd、Mn、Pb、Zn、Cu、Co和V)、As和Se,分析仪器为电感耦合等离子体质谱(ICP-MS,Agilent-8900)。石灰水和脱硫废水样品过0.22 m滤膜后,用1% HNO3稀释10倍进行ICP-MS分析。采集气态汞的吸收液过0.22 m滤膜后,用双道原子荧光
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 燃煤 耦合 污泥 发电 过程 重金属 迁移 转化 试验 研究