生物质转化技术与应用研究进展.doc
《生物质转化技术与应用研究进展.doc》由会员分享,可在线阅读,更多相关《生物质转化技术与应用研究进展.doc(18页珍藏版)》请在第一文库网上搜索。
1、生物质转化技术与应用研究进展摘要:论述了利用热化学转化和生物化学转化将生物质进行转化利用的技术,介绍了利用这些新技术在生物质发电、制取乙醇、甲醇、氢气、沼气等燃料方面的应用前景。随着人类对能源需求的不断扩大,主要为人类提供能量的化石燃料资源正在迅速地减少,化石能源的过度开发利用带来环境污染和全球气候异常的问题也日益突出。因此,寻找和开发新型可再生能源迫在眉睫。生物质能恰恰能满足这些要求,因为它具有不断的可再生性、对环境的友好性和能够抑制全球气候异常。生物质资源十分丰富,据估计,全球每年水、陆生物质产量约为目前全球总能耗量的610倍左右。目前生物质已成为仅次于煤炭、石油、天然气的第四大能源,约占
2、全球总能耗的14%。在发展中国家则更为突出,生物质能占总能耗的35%。据预测,到2050年,生物质能用量将占全球燃料直接用量的38%,发电量占全球总电量的17%。因此,许多发达国家和一些发展中国家将生物质看作是对环境和社会有益的能源资源,加快了生物质能源的产品化进程。生物质转化新技术主要是热化学转化和生物化学转化。目前,中国的大部分农业废弃物就地焚烧,导致资源浪费和环境污染。因此,充分利用现代新技术,将生物质能进行转换,对于建立可持续发展的能源体系,促进社会和经济的发展以及改善生态环境具有重大意义。1生物质转化技术1.1生物质热化学转化技术1.1.1生物质气化技术生物质气化技术是通过热化学反应
3、,将固态生物质转化为气体燃料的过程。生物质气化技术已有100多年的历史。最初的气化反应器产生于1883年,它以木炭为原料,气化后的燃气驱动内燃机,推动早期的汽车或农业排灌机械。生物质气化技术的鼎盛时期出现在第2次世界大战期间,当时几乎所有的燃油都被用于战争,民用燃料匮乏。因此,德国大力发展了用于民用汽车的车载气化器,并形成了与汽车发动机配套的完整技术。二战后随着廉价优质的石油广泛被使用,生物质气化技术在较长时期内陷于停顿状态。但第二次石油危机后,使得西方发达国家重新开始审视常规能源的不可再生性和分布不均匀性,出于对能源和环境战略的考虑,纷纷投入大量人力物力,进行可再生能源的研究。作为一种重要的
4、新能源技术,生物质气化的研究重新活跃起来,各学科技术的渗透,使这一技术发展到新的高度。按照使用介质的温度差异,将生物质气化分为常温气体气化和高温空气气化。常温气体气化是气化介质温度相对较低的气化反应,包括空气气化、氧气气化、水蒸气气化、水蒸气氧气混和气化和氢气气化。通常常温气体气化反应产气热值不高,热效率较低,要产生高热值的气体,气化条件将相对苛刻。高温空气气化技术则克服了传统的生物质气化技术通常存在的气化效率及燃气热值低,燃料利用范围小,灰渣难于处理,易形成焦油苯酚等化合物的缺点。因此,国外许多国家开发了这种高温空气气化技术。高温空气气化工艺流程为其气化剂为1000以上的高温空气,空气里伴以
5、10%20%的水蒸气,空气过剩系数控制在0.30.5之间。高温空气气化系统由气化器、集渣器、余热锅炉、燃气净化装置等组成。1000以上的空气和10%30%100的蒸气混合。1000以上的混合气体输人气化器。气化器由泡化床区和厚而有间隙的卵石床区组成。通过控制低热值燃料流量,使气化器内空气过剩系数保持在0.30.5之间。低过剩空气系数使得泡化床区发生高温空气不完全燃烧,生成的燃气和熔渣穿过卵石床进入集渣器。合成燃气先经余热锅炉释放显热以产生气化系统所需的蒸气,再经净化处理去除硫化氢、氯化氢和烟尘,最终的纯净燃气供给热能或电能发生系统。1.1.2生物质热裂解技术生物质热裂解是利用热能切断大分子量的
6、有机物、碳氢化合物,使之转变成为含碳数更少的低分子量物质的过程,包括大分子的键断裂、异构化合小分子的聚合等反应。最后生成各种较小的分子。其中主要产品可通过控制反应参数,如温度、反应时间、加热速率、活性气体等加以控制。低温慢速裂解一般在400以下,主要得到焦炭(30%);快速热裂解是在500,高加热速率(1000s-1),短停留时间的瞬时裂解,主要得到气体产物(80%以上)。在生物质热裂解的各种工艺中,不同研究者采用了多种不同的试验装置,然而在所有热裂解系统中,反应器都是其主要设备,因为反应器的类型及其加热方式的选择在很大程度上决定了产物的最终分布,所以反应器类型的选择和加热方式的选择是各种技术
7、路线的关键环节。反应器可分为机械接触式反应器、间接式反应器、混合式反应器和真空热裂解反应器4类。1.1.3生物质液化技术生物质液化是在低温(250400)及高的反应气体压力(15MPa)下将生物质转化为稳定的液态碳氢化合物,可分为直接液化和间接液化。直接液化是在高温、高压和催化剂的共同作用下,在H,CO或其混合物存在的条件下,将生物质直接液化生成液体燃料。间接液化一般是先将生物质转化为适合化工生产工艺的合成燃料气,再通过催化反应合成碳氢液体燃料。生物质液化技术是最具有发展潜力的生物质能利用技术之一。国外已有多家机构开展了生物质液化的研究,并取得了阶段性成果。1.2生物质生物化学转化技术1.2.
8、1生物质厌氧发酵技术厌氧发酵是指在隔绝氧气的情况下,通过细菌作用进行生物质的分解。将有机废水(如制药厂废水、人畜粪便等)置于厌氧发酵罐(反应器、沼气池)内,先由厌氧发酵细菌将复杂的有机物水解并发酵为有机酸、醇、H2,CO2等产物,然后由产氢产乙酸菌将有机酸和醇类代谢为乙酸和氢,最后由产CH4菌利用已产生的乙酸和H2,CO2等形成CH4。可产生CH4(体积分数为55%65%)和CO2(体积分数为30%40%)气体混合物。埋在填埋场的城市废弃物的厌氧发酵产生的沼气,若不进行回收利用,垃圾填埋场产生的沼气最终将进入大气。若将开有小孔的管道插入到填埋场,可以将填埋场产生的沼气抽出作为能源使用,还可避免
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物 转化 技术 应用 研究进展