混合储能系统在风光互补微电网中的应用.doc
《混合储能系统在风光互补微电网中的应用.doc》由会员分享,可在线阅读,更多相关《混合储能系统在风光互补微电网中的应用.doc(16页珍藏版)》请在第一文库网上搜索。
1、混合储能系统在风光互补微电网中的应用摘要:光伏发电和风力发电输出功率具有间歇性和随机性的特点,为了提升微电源的性能,将储能装置应用于风光互补的微电网中。采用超级电容与蓄电池的混合储能系统,通过对DC/DC变换器控制策略的合理设计,实现了蓄电池恒流充放电,延长了使用寿命;针对传统PID控制的不足,采用响应速度更快、控制效果更好的滑模变结构控制方法;为了平抑风光互补微电网并网功率,并在孤岛运行时提供稳定的电压频率支持,采用低压微电网的下垂控制策略。在孤岛运行时,分别在风速、光照强度改变以及负载变化的情况进行了仿真评估混合储能系统的性能,结果表明,混合储能系统能够提高风光互补微电网的电能质量。为了更
2、高效地利用可再生能源,在太阳能、风能资源比较丰富的地区,构建风光互补微电网进行发电,可以提高微电网供电的连续性、稳定性和可靠性1-2。典型的风光互补微电网由风力发电单元、光伏发电单元、储能系统及负荷组成3。其中,储能对于微电网的不间断供电、电力调峰、电能质量的改善和微电源性能的提升具有非常重要的作用,是微电网安全可靠运行的关键4-5。蓄电池储能具有能量密度大、运行维护简便的优点6,超级电容器具有功率密度大、循环寿命长、充放电效率高的优点7,二者在技术性能上有互补性8,通过合理连接混合使用,可使系统兼具蓄电池的高能量密度和超级电容器的高功率密度的优点,并可以优化蓄电池的工作环境。文献9-10对混
3、合储能应用于独立的光伏发电系统进行了研究,研究表明混合储能应用于独立光伏系统,可以降低蓄电池的放电深度,提高光伏系统的能量转换效率;文献11-12将混合储能系统应用在风力发电中,结果表明,混合储能可以迅速平衡系统瞬时功率,改善风电功率波动,优化蓄电池的工作状态,延长其使用寿命;文献13在分析微电网稳定运行对储能要求的基础上,提出适用于微电网的混合储能控制策略,在满足微电网运行需求的前提下,混合储能结构能够延长蓄电池的使用寿命,有较强的技术经济性。本文深入分析了含有混合储能系统的风光互补微电网的拓扑结构和控制策略,进而在孤岛模式下进行仿真,考虑了当外界自然条件和负载变化时,混合储能系统的加入对于
4、负载电压和系统频率的影响,验证了混合储能系统的加入对于提高电能质量的作用。1储能系统结构混合储能系统由蓄电池组、超级电容器组、双向DC/DC变换器和双向DC/AC变换器组成,结构如图1所示。其中,UB和RB为蓄电池组电压和等效内阻;L为双向DC/DC变换器电感;iL为流过电感上的电流;C为直流母线电容;udc为直流母线电压;Usc和Rsc为超级电容器组等效电压源和等效内阻;Lf为变换器滤波电感;Cf为变换器滤波电容;Rf为变换器滤波电阻;Zln为线路阻抗;Z为恒阻抗负载;Ui、Il分别为变换器输出的电压和滤波电感上的电流;Uldi为滤波电容上的电压;Ici为流向滤波电容上的电流;Iln为流向负
5、载和电网的电流之和。蓄电池组通过双向buck/boost变换器与超级电容器组一起并联在三相变换器的直流母线上,三相变换器经过LC滤波器接入风光互补微电网的交流母线上,通过与微电网之间有功和无功功率的交换实现系统的瞬时功率平衡和稳定控制。2双向DC/DC变换器的控制策略为了验证DC/DC变换器滑模变结构控制方法的响应速度和控制效果,搭建如图1所示的混合储能系统,系统中将三相逆变器部分等效为恒功率负载。系统参数为:超级电容器电容15F,额定电压900V,初始电压850V,内阻0.1;蓄电池容量100Ah,额定电压240V,内阻0.5;双向DC/DC变换器电感9mH;负载电阻100。仿真得到传统PI
6、D控制与滑模变结构控制时电感电流仿真波形,如图4所示。两种控制方法都能使电感电流有效地跟踪给定电流,采用PID控制方法输出的电感电流纹波约为20%,而采用滑模变结构控制方法输出的电感电流纹波约为5.7%。由此可以看出,采用滑模变结构的控制方法输出的电感电流纹波更小,响应的速度也更快。3双向DC/AC变换器的控制策略当光照、温度、风力发生变化时,风光互补的微电网输出功率波动很大,这就要求混合储能系统能够平抑分布式电源的并网功率,减少功率波动对微电网系统的冲击,而在孤岛运行时能够提供微电网系统的电压和频率参考,且能合理分担负荷的功率,维持整个系统的功率平衡。因而,双向DC/AC变换器采用控制灵活、
7、简单的下垂控制策略。在低压微电网中,微电源输出的有功功率主要与输出电压的幅值有关,而无功功率主要与输出电压相角有关。因而,传统的下垂控制方程变为根据上述低压下垂特性,设计得到功率控制器,如图5所示。同时为了改善三相输出电能,需对电压和电流进行精确、动态的控制,其中最典型的控制策略是电压电流双环控制,如图6所示。输出电压与功率控制器得到的参考电压信号相比较,其差值经过电压环PI控制器和前馈解耦控制得到电流内环的参考电流。滤波电感电流与参考电流的差值经过电流环PI控制器、前馈解耦和电压前馈补偿得到SPWM调制电压信号。4仿真分析为了验证混合储能系统在风光互补微电网中的重要性,构建一个风光互补的微电
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 混合 系统 风光 互补 电网 中的 应用
