氢储能系统关键技术及发展前景展望.doc
《氢储能系统关键技术及发展前景展望.doc》由会员分享,可在线阅读,更多相关《氢储能系统关键技术及发展前景展望.doc(8页珍藏版)》请在第一文库网上搜索。
1、氢储能系统关键技术及发展前景展望相比传统能源,氢能源环保且可持续发展,化学反应后只产生水,具有零污染、高效率、适合远距离输送的特点。氢能源可以实现气、液、固三态存储,存储过程自耗少、能量密度高、生产方式多样。为实现“碳达峰、碳中和”的目标,我国电力行业的减碳压力不容小觑,同时也孕育着新的机遇和挑战。在“十四五”乃至更长一段时间内,氢能源将会迎来新的发展机会,在减碳进程中扮演重要角色。随着我国可再生能源发电量逐年增多、装机容量占比不断增大,氢储能系统可参与并网消纳,有效减少弃风弃光率,提高可再生能源综合收益。本文结合国内外氢能源发展现状,分析当前氢储能系统关键技术及制约因素,研究其在电力行业中的
2、应用模式;结合相关政策研究,提出未来氢储能系统发展建议。1氢能源发展概述目前广泛推广的氢能源主要指氢气的化学能,即氢气通过氧化反应所释放的能量。氢能源可替代传统化石能源作为交通工具的动力燃料,也可替代煤炭、天然气成为电力系统发电侧的能源燃料,氢能源的完整产业链示意图如图1所示。氢气的热值是汽油的3倍、焦炭的4.5倍,化学反应后仅产生对环境无污染的水。氢能源是二次能源,需要消耗一次能源来制取,氢气的获取途径主要有化石能源制氢和可再生能源制氢。1.1国外氢能源发展现状日本在燃料电池关键技术和商业化应用方面处于世界领先地位,其2017年发布的氢能源基本战略明确了到2050年建成氢能社会的目标。日本氢
3、能与燃料电池领域技术全面,专利数量居全球第一。美国将10月8日定为“氢能与燃料电池日”,其对氢能产业的重视可见一斑。美国规划制定了从研发到产业化的完整发展路线,时间从2000年一直持续到2040年。此外,美国对运行的氢能基础设施实行30%50%的税收抵免。欧盟规划2050年氢燃料电池汽车占家用车比重达35%。2014年,欧盟启动Horizon计划,在氢能和燃料电池领域的总预算达到220亿欧元。目前,欧洲正在运行的加氢站数量居全球第一,氢能技术和产业发展政策效果显著。1.2国内氢能源发展现状近年来,我国高度重视氢能源产业发展,在科技专项、创新工程等方面进行了重点布局,取得了一定成效。当前国内制氢
4、主要还是依靠化石能源,电解水制氢占比非常有限。随着氢储能相关技术的发展和建造成本的下降,未来风、光等可再生能源制氢的规模会越来越大,我国氢能源结构会越来越清洁。总体来说,制约我国氢能源发展的还是燃料电池电堆和关键材料。国产电堆在功率密度、系统功率、寿命等方面与先进水平相比还有差距;质子交换膜、催化剂、膜电极等关键材料和高压比空压机、氢气循环泵等关键设备依赖进口,产品价格较高,国内外燃料电池关键技术参数对比如表1所示。因此,我国需注重核心材料和关键技术的突破,补足短板。2氢储能系统关键技术在可再生能源高占比的电力系统中,弃风弃光问题随着风电、光伏装机总容量的不断增加而日益突出。由于风电、光伏出力
5、的预测准确程度有限,其出力随机性会对电网造成一定冲击。氢储能系统可利用新能源出力富余的电能进行制氢,储存起来或供下游产业使用;当电力系统负荷增大时,储存起来的氢能可利用燃料电池进行发电回馈电网,且此过程清洁高效、生产灵活。当前氢储能系统的关键技术主要包含制氢、储运氢和燃料电池技术3个方面。2.1制氢利用可再生能源发电制氢是氢能制备的重要途径,制氢成本约为1.12.2元/m3,对比煤制氢0.691.18元/m3和天然气制氢0.81.7元/m3,优势并不明显,但因其为“绿氢”,综合价值较高。目前电解水制氢主要分为碱水电解、固体氧化物电解和PEM(ProtonExchangeMembrane,简称P
6、EM)纯水电解技术3种。其中,碱水电解制氢发展成熟、商业化程度高、成本较低,是可再生能源制氢项目的首选方式。河北沽源风电制氢项目(200MW风电、10MW制氢)的建成、吉林舍力风光制氢储能示范项目(50MW风电、1MW制氢和1MW/(MWh)储能)的核准批复均对提高可再生能源消纳、促进氢储能系统发展起到引领促进作用。未来随着可再生能源规模化装机及电解水能源转换效率的提高,“绿氢”制造成本会呈现持续下降趋势。2.2储运氢储运氢技术作为氢气从生产到利用过程中的桥梁,至关重要。可通过氢化物的生成与分解储氢,或者基于物理吸附过程储氢。储氢方式比较如表2所示。氢能源具有质量能量密度大但体积能量密度小的特
7、点,制约其储运技术发展的关键在于兼顾安全、经济的前提下,提高氢气的能量密度。综合表 2 及当前行业情况分析,高压气态储氢技术成熟、成本较低、应用最多,但并非最佳方案。有机液态储氢凭借其安全性、便利性及高密度的特点,具有较大发展潜力,是当前研究的重要方向。此外,基于我国现有的天然气管道进行氢气的传输是否可行,也是值得探讨的课题。2.3 燃料电池燃料电池通过电化学反应将氢气的化学能直接转化为电能,清洁无污染,能量转化效率高,是氢能源的最佳利用方式,在全球范围内具有广阔的应用前景。20092018 年全球燃料电池出货量统计如图 2 所示,由图可见出货量统计数据增势明显。燃料电池类型主要包括碱性电解质
8、、质子交换膜、磷酸、熔融碳酸盐和固体氧化物燃料电池,区别在于电解质和工作环境温度不同,适合的应用场景也有差异。各类型燃料电池相比较,质子交换膜燃料电池发电效率为 40%50%,启动快,比功率高,结构简单,处于商业化前沿,在可再生能源领域的氢储能系统中应用较多。固体氧化物燃料电池发电效率为55%65%,余热利用价值高,热电联供效率高,但运行温度高,启动速度较慢,适用于热电联供模式。近年来我国氢能燃料电池技术整体上取得了长足发展,但存在主要部件依赖进口、电堆和系统可靠性需提高、标准体系需健全完善等问题,仍是制约氢储能系统发展的关键因素。3 氢储能系统在电力行业中的应用风电、光伏等可再生能源已成为我
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 氢储能 系统 关键技术 发展前景 展望