SCR脱硝系统多目标优化控制研究.doc
《SCR脱硝系统多目标优化控制研究.doc》由会员分享,可在线阅读,更多相关《SCR脱硝系统多目标优化控制研究.doc(11页珍藏版)》请在第一文库网上搜索。
1、SCR脱硝系统多目标优化控制研究摘要:燃煤机组面临着灵活运行和超低排放的双重压力,机组快速深度变负荷对选择性催化还原(ive catalytic reduction,SCR)脱硝系统的控制提出了更高要求。提出一种兼顾超低排放和经济成本的多目标优化控制方法,将脱硝成本加入优化目标函数,采用预测控制结构,结合神经网络和遗传算法进行模型建立和控制量寻优,实现了喷氨量的优化控制。仿真结果表明,该方法在满足排放标准的同时降低了脱硝成本,并能适应锅炉大范围变工况运行。引言在能源结构转型的过程中,新能源电力规模化接入电网对燃煤机组提出了运行灵活性要求。快速深度变负荷意味着机组运行工况大范围快速变化,锅炉工况
2、的变化会使得燃烧产生的NOx波动加剧,这无疑加大了机组实现NOx超低排放的难度。SCR脱硝是目前主流的烟气脱硝技术,其反应是一个复杂的物理化学过程,喷氨量较多可以降低NOx排放,但会增加经济成本,并导致氨逃逸增大,影响机组安全运行。因此,如何对脱硝系统进行优化控制,在保证达标排放的同时实现机组经济运行是燃煤电站亟待解决的问题。围绕脱硝系统喷氨量控制问题,国内外学者做了大量研究。Haggan-Ozaki V等人基于 RBF-ARX非参数模型,利用一种变异的卡尔曼滤波状态空间方法实现了脱硝系统喷氨量控制,控制效果良好,计算效率有所提高。黄宇等人提出了线性自抗扰控制方法,使得SCR脱硝系统跟踪设定值
3、的能力有所提升。Nakamoto M等人利用广义预测控制( generalized predictive control,GPC)和线性二次调节(linear quadratic regulator,LQR)方法对火力发电厂的NOx分解过程进行串级控制,使得脱硝系统的抗干扰能力提高,出口NOx浓度波动范围明显减小。张晓东等人提出了基于多变量广义预测控制算法,在前馈控制中加入磨煤机断煤和堵磨信号,有效地抑制磨煤机在断煤及堵磨后脱硝系统出口NOx浓度大幅波动情况,使控制系统稳定运行。秦天牧等人使用自适应多尺度核偏最小二乘(SMKPLS)法建立SCR脱硝系统预测模型,模型通过对出口NOx浓度变化做出
4、预判,进而起到预先校正的作用。Hui Peng等人提出了一种基于RBF- ARX模型的滚动时域预测控制策略,以出口NOx接近期望值为优化目标。周洪煜等人设计了基于混结构RBF神经网络(MSRBFNN)的喷氨流量最优控制系统,以 SCR 装置出口NOx含量最小为学习目标,求取最佳喷氨控制量。上述针对SCR脱硝系统控制方法的研究,主要关注于SCR出口NOx浓度的控制,对喷氨经济成本考虑较少。基于以上问题,本文兼顾脱硝过程的排放要求和经济成本,在保证出口NOx排放达标的同时,考虑系统各方面的经济成本,比如还原剂成本和排污成本等。在脱硝系统的控制策略中将经济成本加入优化目标,构建预测控制算法,通过电厂
5、实际运行数据仿真验证控制效果。1 SCR脱硝系统某电厂燃煤机组SCR烟气脱硝装置如图1 所示。储存在氨罐中的液态氨蒸发汽化后与稀释空气混合均匀,喷入SCR反应器上游的烟气中与NOx发生反应,反应过程如图2所示。烟气中的NOx在还原剂氨和催化剂同时存在的条件下,发生氧化还原反应,将烟气中的NOx还原为氮气(N2)和水(H2O)。喷氨量是影响脱硝效率的主要因素。控制系统主要根据反应器入口NOx浓度和烟气流量来调节氨气阀门开度,改变喷氨量。喷氨量过少,NOx排放超标;喷氨量过多,经济成本升高,同时会使氨逃逸增大。烟气中SO2在SCR催化剂作用下生成SO3,逃逸的NH3、SO3与水反应生成硫酸铵(NH
6、4)2SO4)和硫酸氢铵(NH4HSO4)。这些副产物会附着在催化剂表面,堵塞催化剂的孔道从而影响催化剂活性,也会造成空气预热器结垢堵塞和腐蚀,烟道阻力增加,严重时可引发引风机失速和机组跳闸。因此,氨过量不但造成还原剂浪费,也直接影响机组安全稳定运行,需设计合理的多目标优化控制方案对喷氨量进行精准控制。2 SCR脱硝系统多目标优化方案SCR脱硝系统反应机理复杂,其受到氨氮摩尔比、烟气温度、反应时间和催化剂活性等因素影响,控制对象具有大迟延大滞后和非线性特性,尤其在机组工况大范围变化时,控制难度较大。预测控制作为一种先进控制算法,其以预测模型为基础,对未来时刻被控对象未来的输出状态进行预判,并以
7、此确定当前时刻的控制动作,即先预测再控制,使得它明显优于传统的先输出后反馈再控制的PID控制系统,具有更好的控制效果。2.1 构建多目标优化控制方案预测控制主要包括预测模型、滚动优化、反馈校正3个部分,其原理是根据模型预测的输出相应调整输入量,通过极小化目标函数求解最优喷氨量,从而使实际输出与设定值保持一致。为了使SCR脱硝系统能在适应机组工况大范围变化的同时降低喷氨成本,本文对DMC预测控制算法进行改进,将神经网络、遗传算法用于预测控制的预测模型、滚动优化,将经济指标加入目标函数构建了脱硝系统的多目标优化控制算法,其控制算法如图3所示。以脱硝系统为研究对象,图中yr为出口NOx浓度设定值,u
8、为喷氨量,y为SCR出口NOx浓度值,ym为预测模型出口NOx浓度预测值,yp为校正后的出口NOx浓度预测值。在仿真过程中,采用提出的机理建模方法来建立模型作为被控对象,便于对算法进行仿真验证。假设已知喷氨量u(k-1),可以得到机理模型出口NOx浓度值y(k-1)以及神经网络预测模型的出口NOx浓度值ym(k)。相应的,通过u(k)可以得到y(k)和ym(k+1)。将k时刻实际输出y(k)与k-1时刻模型输出ym(k)之间的偏差视为k时刻预测误差的估计值,并将其作为反馈校正信号补偿到k时刻的预测模型输出ym(k+1)中,即反馈校正后的预测值为反馈校正环节考虑了上一时刻的模型预测误差,一定程度
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SCR 系统 多目标 优化 控制 研究