燃煤电厂脱硫废水热法零排放系统设计及分析.doc
《燃煤电厂脱硫废水热法零排放系统设计及分析.doc》由会员分享,可在线阅读,更多相关《燃煤电厂脱硫废水热法零排放系统设计及分析.doc(12页珍藏版)》请在第一文库网上搜索。
1、燃煤电厂脱硫废水热法零排放系统设计及分析摘 要:随着我国环保政策的不断完善和水资源的严重缺乏,脱硫废水的深度处理及废水中水分回收具有重要的意义。本文构建了脱硫废水热法零排放全流程系统,提出了三种热法浓缩工艺:生蒸汽驱动的多效蒸发系统(MEE-S),低温烟气驱动的多效蒸发系统(MEE-G);单级机械蒸汽再压缩系统(MVR-S)和耦合MVR的多效蒸发系统(MEE-MVR)。以600 MW超临界机组为例,利用Aspen Plus软件进行了流程模拟和系统经济性计算。计算结果表明:相对于传统的以生蒸汽为热源的多效蒸发系统,当采用低温烟气作为蒸发系统热源,则烟气降温5.5 ,如果忽略低温烟气成本,则具有较
2、低的吨废水处理成本;单级MVR系统由于利用热泵蒸发技术,能耗大幅度下降,但投资成本为传统多效蒸发系统的113%;耦合MVR的多效蒸发系统,由于在较低浓度下蒸发了部分进料,因此其压缩机功耗相对单级MVR下降了30%,其吨废水处理成本约为传统多效蒸发系统的58.2%。关键词:脱硫废水;蒸发结晶;低能耗;零排放;机械蒸汽再压缩;引 言随着我国环保政策的不断完善和水资源的严重缺乏,脱硫废水的零排放技术(ZLD)成为了近年来的研究热点。ZLD是指:电厂不向地面水域排放废水,大部分水分回收利用,少量废水进入固体废物或固化在灰渣中。根据国内外已有的脱硫废水零排放工艺,可将ZLD可分解为三个关键环节:预处理,
3、浓缩减量,转移或固化。从废水零排放系统的经济性和能耗上来看,浓缩减量环节是关键。目前国内已投入工业化应用的浓缩减量技术主要采用热法浓缩。按照加热方式不同,可分为:多效蒸发结晶和机械蒸汽再压缩技术(MVR)等。广东河源电厂2600MW超临界燃煤机组,脱硫废水采用2级预处理+四效蒸发结晶系统处理。蒸汽消耗0.28-0.35t/t废水,电耗30kWh/t废水。广东三水恒益电厂2600MW超临界机组,脱硫废水处理采用两级卧式机械蒸汽压缩蒸发技术+2级卧式多效蒸发技术工艺。蒸汽消耗0.3t/t废水;电耗:30kWh/t废水。如何降低传统热法浓缩环节的能耗,是脱硫废水零排放技术发展需要解决的重要问题之一。
4、段威等总结了4种不同的脱硫废水零排放工路线并进行了初步的技术-经济性分析,研究结果表明热法浓缩干燥工艺吨水运营成本低,更加适用于燃煤电厂脱硫废水零排放工程。毛彦霞采用MVR对脱硫废水进行了中试实验,试验结果表明:MVR处理废水效果较好,产水能力较高,其出水水质可以达到一级除盐水的标准,脱盐率可以达到99%以上,出水率可达80%。Dahmardeh等基于Aspen Plus软件,设计并优化分析了一种基于多效蒸发-MVR耦合蒸发结晶系统,讨论了给定浓缩比下,关键参数对蒸发结晶系统性能和成本的影响。尽管目前针对燃煤电厂脱硫废水零排放工艺路线的讨论较多,但是在同一基准上,定量对比不同脱硫废水热法零排放
5、系统的能耗和经济性的研究,并不多见。本文首先构建了基于热法浓缩技术的脱硫废水零排放全流程;针对浓缩减量环节,提出了三种浓缩工艺:多效蒸发(MEE)、单级MVR(MVR-S)和耦合MVR的多效蒸发(MEE-MVR),利用流程模拟软件Aspen plus建立了系统的质量和能量平衡,讨论了不同工艺的能耗;最后对三种废水零排放流程进行了经济性分析,以期为低能耗燃煤电厂废水零排放技术提供了一定的理论指导。1 脱硫废水处理系统流程脱硫废水零排放处理系统主要分为预处理单元、浓缩减量单元和结晶分盐单元,见图1。针对不同的浓缩减量技术,假设预处理单元和结晶分盐单元都相同。脱硫废水软化预处理环节采用Ca(OH)2
6、+ Na2CO3双碱法,处理后的水质指标见表1。由表1可以看出:经过软化处理后,废水中钙离子的质量分数小于0.005,镁离子的质量分数小于0.001,悬浮物的质量分数小于0.001,可以避免下游蒸发浓缩结晶过程中结垢。脱硫废水经过预处理后,废水中主要的无机离子为Na+、Cl-和SO42-,占溶解性总固体的比例通常大于90%。直接经蒸发浓缩处理后得到混合杂盐。结晶杂盐遇水易溶解,且通常含有有机物甚至重金属,属于固体废弃物。因此在蒸发结晶过程中实现分盐,可以提高结晶盐的资源化效率,降低综合处理成本。分盐结晶实质是利用NaCl、Na2SO4等物质浓度及溶解度差异,在蒸发过程中控制合适的运行温度和浓缩
7、倍数来实现盐的分离。根据预处理后的脱硫废水三元体系相平衡图(Na+/Cl-、SO42-H2O)确定分盐结晶工艺流程,如图2所示,分为五个阶段:蒸发浓缩阶段、Na2SO4蒸发析晶阶段(343.15 K)、Na2SO410H2O冷却析晶阶段(273.15 K)、NaCl蒸发析晶阶段(343.15 K)、杂盐蒸发结晶(343.15 K)。为了减少结晶器的能耗,假设浓缩减量环节出口的液体中NaCl和Na2SO4浓度为对应温度下饱和溶液的浓度。1.1 多效蒸发系统多效蒸发系统采用三效蒸发器对脱硫废水进行浓缩,蒸发器和物料流程采用顺流流程,根据蒸发器热源不同,设计了两种多效蒸发流程,见图3。图3多效蒸发工
8、艺流程多效蒸发系统的热源可以来自电厂低压缸抽汽,也可以采用烟气驱动的低温多效蒸发系统。图3a为传统的以生蒸汽为热源的三效蒸发系统(MEE-S)流程示意图。经过预处理的脱硫废水分别经过一效至三效蒸发后逐级浓缩;生蒸汽(压强:0.5 MPa,温度:151.9 )由一效加入,每效包括加热器与分离器,物料与生蒸汽或者上级过来的二次蒸汽在加热器中换热,然后进入分离器闪蒸,形成的二次蒸汽进入下一效。最后一效的二次蒸汽通过冷凝器冷凝成液态水后汇流至二次冷凝水罐。一效至三效蒸发器压力分别为54 kPa、39 kPa、29 kPa。基于烟气驱动的低温三效蒸发浓缩工艺流程(MEE-G),见图3b。约50%的多效蒸
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 燃煤 电厂 脱硫 废水 热法零 排放 系统 设计 分析