光伏储能联合微网系统工程方案设计.doc
《光伏储能联合微网系统工程方案设计.doc》由会员分享,可在线阅读,更多相关《光伏储能联合微网系统工程方案设计.doc(8页珍藏版)》请在第一文库网上搜索。
1、光伏储能联合微网系统工程方案设计摘要:提出分布式发电光伏-储能联合微网系统总体设计方案,进行了并网光伏发电系统、储能系统和微网控制管理系统设计。重点介绍了光伏电池阵列、并网逆变器、储能装置充放电系统、储能系统容量规划、微网电网结构、光储联合微网系统整合运行等设计内容。本工程将建设一个分布式光伏电源、储能系统友好接入电网,实现微电网双向潮流环境下控制保护协调工作的系统。引言随着光伏、风电等可再生能源发电技术的发展,分布式发电日渐成为满足负荷增长需求、提高能源综合利用效率、提高供电可靠性的一种有效途径,并在配电网中得到广泛的应用。但分布式发电的大规模渗透也产生了一些负面影响,如单机接入成本较高、控
2、制复杂、对大系统的电压和频率存在冲击等。这限制了分布式发电的运行方式,削弱了其优势和潜能。微网技术为分布式发电技术及可再生能源发电技术的整合和利用提供了灵活、高效的平台。光储联合微网工程结合河南金太阳示范工程,选择某高校七栋学生宿舍楼共500kWp建设规模,进行光伏发电系统、储能系统和微网控制管理系统研究和设计,完成分布式光伏储能发电接入工程总体技术方案,为实现绿色光伏电源无障碍并网提供技术指导。以下对工程的发电系统、储能系统和微网控制管理系统方案设计进行重点描述。1总体设计方案系统将采用分布式并网的设计方案+储能微网系统,将500kWp系统分成2个250kW并网发电单元,通过2台250kW并
3、网逆变器接入0.4kV交流电网,实现并网发电1-2。并网发电示意图如图1所示。2发电系统设计2.1光伏电池阵列设计系统的电池组件选用功率为230Wp的多晶硅太阳电池组件,工作电压约为29.5V,开路电压约为37V。根据250kW并网逆变器的MPPT工作电压范围(450V820V),每个电池串列按照20块电池组件串联进行设计,每个250kW的并网单元需配置56个电池串联组并列,1120块电池组件,其功率为257.6kWp;整个500kWp系统需要112个电池串联组并列,共2240块电池组件。2.2并网逆变器设计发电系统设计为2个250kWp的逆变器光伏并网发电,整个系统配置2台该型号的光伏并网逆
4、变器,组成500kWp并网发电系统。逆变器主电路的拓扑结构如图2所示,并网逆变电源通过三相全桥变换器,将光伏阵列的直流电压变换为高频的三相斩波电压,并通过滤波器滤波变成正弦波电压,接着通过三相变压器隔离升压后并入电网发电。为了使光伏阵列以最大功率发电,在直流侧加入了MPPT算法3。3储能系统设计3.1储能装置选择综合比较各种储能技术在新能源分布式发电领域的应用特点,全钒液硫电池在功率配比、循环使用寿命、使用费用等各个方面,均比较适合本项目的设计要求,因此,设计方案采用液流电池。3.2储能装置充放电系统对于储能系统,设计采用双向逆变器实现钒电池储能系统与交流母线的能量交互。双向逆变器采用逆变/充
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 光伏储能 联合 系统工程 方案设计
