生物质气化耦合发电炉型选择及应用分析.doc
《生物质气化耦合发电炉型选择及应用分析.doc》由会员分享,可在线阅读,更多相关《生物质气化耦合发电炉型选择及应用分析.doc(11页珍藏版)》请在第一文库网上搜索。
1、生物质气化耦合发电炉型选择及应用分析摘要:结合国家能源局对生物质耦合发电技改试点的批复,分析耦合发电技改工艺发展趋势,对比直接耦合、气化耦合及蒸汽耦合方式的发电效率及投资成本,就气化耦合方式开展调研。对不同生物质气化炉在处理规模、燃气特性及组成方面与气化耦合发电需求进行了匹配,参考国内外耦合发电的实施案例,选择气化耦合最适炉型,并分析现存政策及市场气化耦合存在的问题。引言随着国家碳排放交易政策以及非化石能源替代战略的逐步推行,燃煤电厂技术革新的压力越来越大,利用现役燃煤机组耦合生物质发电的模式将成为生物质清洁高效利用的必然选择。为加速煤电转型,降低碳排放量以应对气候变化,我国在“十三五”规划中
2、明确地将生物质与燃煤耦合发电项目作为重点任务。2017年11月、2018年6月,国家能源局接连公布了关于开展燃煤耦合生物质发电技改试点工作的通知、关于燃煤耦合生物质发电技改试点项目建设的通知,通知规定了开展燃煤耦合生物质发电技改试点工作事宜,并确定了技改试点项目名单。明确了燃煤耦合优先选取热电联产煤电机组,布局一批燃煤耦合农林废弃残余物发电技改项目的要求。提出优先采用便于可再生能源电量监测计量的气化耦合方案的建议。产出电量单独计量,由电网企业全额收购,采用经国家强制性产品认证的计量装置,可再生能源电量计量在线运行监测数值同步传输至电力调度机构。本次通知共批准了84家发电公司,89项耦合发电项目
3、,其中农林废弃物耦合项目58项,污泥耦合项目29项,垃圾耦合2项。其中,污泥耦合均采取了干化后掺烧的耦合工艺,而垃圾耦合则选用了焚烧后蒸汽送至汽轮机的耦合工艺。农林生物质项目中,直接耦合2项,蒸汽耦合1项,气化耦合55项。可见,生物质气化技术已经成为了燃煤电厂改造的热点技术,具有广泛的改造需求及应用市场。本文就国内外气化炉技术及其应用情况进行了广泛调研,就不同炉型的技术特点和应用范围以及燃煤电厂生物质耦合发电气化炉选择进行了分析1。1气化耦合发电工艺生物质耦合发电主要有3种方式,直接耦合、气化耦合和蒸汽耦合。直接耦合是研磨过的生物质与燃煤直接在电厂锅炉中混燃的工艺过程;气化耦合则需要设置单独气
4、化炉,生物质气化后将产出的燃气引入电厂锅炉中混燃;生物质在单独设置的锅炉中燃烧,产出的蒸汽并入电厂锅炉蒸汽联箱的工艺则被称为蒸汽耦合。不同耦合方式工艺特点各异,基于耦合发电技术成熟的欧洲地区的应用情况,对不同耦合方式发电效率及单位投资进行了对比,对比结果如表1所示2。从对比数据来看,直接耦合的方式在改造费用及发电效率方面均处于优势地位,但对生物质种类及预处理深度要求较高,容易产生结渣及腐蚀问题,同时也会影响燃煤锅炉的灰渣性质,降低利用价值。蒸汽耦合通过单独设置燃烧锅炉避免了生物质对原有设备的影响,生物质混燃比例仅收到发电汽机制约,但是需要单独增设除尘等净化系统,投资成本将大大增加。气化耦合发电
5、效率与蒸汽耦合接近,但投资成本减少了近1/2,通过气化方式减少了生物质对燃煤锅炉的影响,扩大了可消纳原料的种类,便于灰分的收集及综合利用,同时可以利用现有的空气净化系统达到排放要求,是比较理想的耦合方式。因此,考虑到耦合发电计量问题及国家政策的倾斜,生物质气化将成为主流的耦合工艺。2生物质气化炉技术比较生物质气化反应需要在气化炉内完成,根据气固接触方式的不同,生物质气化炉主要分为固定床(上吸式、下吸式)、流化床(鼓泡流化床、循环流化床)和气流床;根据运行压力不同可分为常压、加压气化炉。气流床对生物质粒径要求较高(颗粒3mm),并不适用于大规模的生物质处理过程,因此,现行的生物质气化技术一般是固
6、定床及流化床2种类型。固定床及流化床气化炉结构的差异影响了其处理规模,燃气特性及品质,从而决定了不同炉型的应用场合。(1)不同气化炉型适用规模。固定床气化炉内部混合程度及热传导都比较差,导致难以达到同一截面物料分布、温度分布、燃气组成均匀一致,随着尺寸放大,上述问题将更加严重。相对而言,流化床气化炉虽然对原料的尺寸要求更加严格,但其物料及温度均匀性更好,运行较为稳定,在处理规模上更具优势。在正常操作条件下,以常规秸秆为原料的不同气化炉处理能力如图1所示。由图1可知,常压流化床气化炉的处理能力可达100MW左右(约600t/d),而固定床气化炉的处理能力不超过10MW(约60t/d)。由于耦合发
7、电需要达到一定规模才具有较高的经济效益,因此,具有更大处理能力的流化床气化炉将更具优势3。(2)不同气化炉型焦油产量。生物质气化往往伴随着焦油的产生,造成能源浪费的同时还降低了气化效率,还影响了气化设备的稳定运转,不经净化的生物质燃气还会对后续管路及燃烧设备造成严重危害。不同气化炉由于结构不同,其焦油产生量有比较大的差别,其中上吸式固定床气化燃气由于经过低温区域而无法完全裂解,焦油含量最高;下吸式固定床气化燃气则可以保证充分的热解温度,焦油含量最少,鼓泡式及循环流化床气化炉介于以上2者之间,具体数据见表24,6。(3)不同气化炉型燃气成分。生物质燃气成分是决定燃气热值及燃烧性能的关键因素,理想
8、的燃气组分可以保证更高的耦合发电参数。在气化剂选用空气的条件下,不同类型气化炉产出燃气组成如表3所示。可以看出,固定床与流化床气化炉燃气热值相差不大都具有较高的气化效率,但由于流化床内部温度、物料分布更均匀,产气量、燃气成分相对稳定,其燃气的品质更高4,6。(4)气化耦合发电炉型选择。固定床气化炉由于其自身的种种局限性,不适于用于燃煤电厂生物质耦合发电项目。首先,固定床气化炉规模较小(一般10MW),无法产生规模效应,限制了项目盈利的可能。其次,固定床气化炉下料过程易产生搭桥现象而控制困难,因此燃气品质波动较大,影响了锅炉的安全运行。处理规模相对较大的上吸式固定床因出口燃气温度较低(约450左
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物 气化 耦合 电炉 选择 应用 分析