《典型生物质能源的转化途径分析对比.doc》由会员分享,可在线阅读,更多相关《典型生物质能源的转化途径分析对比.doc(15页珍藏版)》请在第一文库网上搜索。
1、典型生物质能源的转化途径分析对比摘要:随着社会经济的不断发展,能源消耗也逐渐增大,寻找、开发可替代的清洁能源成为当前研究的热点。在众多的清洁能源中,生物质能是一种广泛存在于禾草类、木材、藻类、动物油、废弃油脂和其他微生物油脂等有机生命体中的可再生能源。然而,由于这些生命体中所携带生物质能的主要物质组成各异,在采用物理、化学以及生物的方法进行生物质能源的提取时,往往会因为所研究或处理的生物质资源的不同而造成生物质能的转化效果差异性大。因此,厘清在生物质能提取过程中各转化条件下(温度、压力、时间、催化剂、介质体系等)各类生物质有机大分子(纤维素、半纤维素、木素、油脂等)的转化效率,对我们选择合理的
2、转化路径是至关重要的。基于此,本文首先综述了生物质原料的主要化学组成,然后针对这些典型生物质化学成分进行相应生物质能转化路线的介绍和功效分析,最后,对于其中颇具应用前景的超临界流体下的生物质能转化技术进行重点研究,以期为超临界流体中各类生物质资源的高效能源化转化过程的工业化应用提供智力支持。近年来,化石燃料的过度开发以及在其使用过程中带来的一系列环境污染问题,促使科研工作者致力于寻找、开发新的可再生能源以代替传统的化石能源1。目前,可再生能源主要包括风能、水能、太阳能以及生物质能等2。其中,生物质能作为全球仅次于煤炭、石油和天然气(均是化石能源)的具有物质性生产能力的唯一可完全替代石油制备相应
3、石化衍生品的能源,因其可实现物质循环,促进农、林和畜牧业发展且有利于生态环保等优点,目前已成为各国能源、化工、环境以及材料等科研领域的研究热点3。根据国际能源机构(International Energy Agency,简称IEA)对生物质(Biomass)的定义,其主要是指直接或者间接通过光合作用而形成的各类有机生命体(包括所有的动植物和微生物)4。生物质能指的是生物质体内贮藏的化学能,采用一定的物理、化学或生物的手段将其提炼并转化为人们所能直接利用的气、液或固态燃料5。据统计,我国每年产生的农业废弃物-秸秆的年产量约为7亿t,其中三成用于还田、二至三成直接用于农村生活燃料、一成左右用于制备
4、饲料和纸张,剩余的均处于浪费状态;我国肉类加工场年产废弃物共1.5亿t;林产加工行业年产林木废弃物0.5亿t6。经核算,包括人畜粪便在内,上述生物质废弃物所包含的生物质能总量约为7亿t标准煤7。由此可见,高效地提取、利用这些生物质体内贮藏的生物质能,对于缓解当前我国的化石能源短缺是十分有利的。为了有效地将贮藏在动植物、微生物体内的生物质能采用合适的方法提炼出来,首先需要了解各类生物质的组成、结构和性质,然后根据生物质的主要化学组成和性质来选择合适的转化路径。因此,本文首先总结了当前主要的生物质原料的组成、性质;然后针对具体的转化方式进行了简要概括;最后,针对具有广泛应用前景的超临界水热/醇热体
5、系下的生物质能的转化技术进行了详细介绍,以期为多种生物质的超临界体系下的能源化转化提供智力支持。1生物质的物化性质目前来说,生物质能主要可从农业废弃物、林业废弃物、水生植物、生活垃圾及人畜粪便等各类物资中提取。这些生物质资源的主要组成包括纤维素、半纤维素、木素以及油脂等等天然有机物8。其中,纤维素、半纤维素以及木素是构成植物纤维细胞壁的主要成分;油脂则来源于动物、植物以及部分藻类生物体9。纤维素(Cellulose)是自然界中储量最大的一种天然多糖(约占植物体的50%),是木材(如马尾松、杨木、桉木等)和非木材(稻麦草、甘蔗渣、竹子等)以及半木材(棉杆)等高等植物细胞壁的主要成分10,是由D-
6、葡萄糖通过-1,4-糖苷键连接而成的大分子多糖11。与纤维素不同,半纤维素由包括葡萄糖单元在内的多种糖单元缩聚而成,聚合度普遍较小,且含有大量的支链,主要是作为细胞壁的粘合剂12。纤维素和半纤维素大分子间和分子内部均存在着大量的氢键,在提取该类生物质能时需要首先破坏其氢键,因此往往需要消耗大量的能量投入13。与纤维素相比,半纤维素分子量较小、支链较多,因此其能源化转化壁垒相对较小。木素作为植物界中第二大类天然高分子,主要作为植物体细胞壁的填充、粘结和防腐剂14。据不完全统计,全球木素的年产量约为500亿t15,因此将其充分地开发利用对于全球的能源危机和环境问题的解决和改善具有重大意义。虽然不同
7、种类植物中的木素含量有一定差别16,但是对于所有植物体来说,组成其木素的基本结构单元均为以下三种苯基丙烷有机骨架,即愈疮木基丙烷(G型)、紫丁香基丙烷(S型)和对羟苯基丙烷(H型)。木素大分子的结构十分复杂,且官能团(如苯基、酚羟基、甲氧基、烷羟基、醚键、碳碳键等等)繁多,这也是其可以作为化石能源的替代物用于多种化石衍生产品制备原料的直接原因17。此外,其结构的复杂性也造成了以其为原料制备生物质能时,所得产物的复杂性以及转化过程的困难性。此外,植物油(占油脂总量的70%)、动物油、废弃油脂或微生物油脂也属于生物质18,是制备生物柴油的主要原材料。不管何种来源,自然界中的油脂均是由一分子甘油与三
8、分子高级脂肪酸经脱水形成的甘油三酯类化合物19。直接将油脂作为燃料用于内燃机时,其黏度大、挥发性低、流动性差等缺点会导致内燃机缸体以及喷油嘴积碳,严重损害内燃机工作和使用寿命20。为了克服这一缺点,早在1983年,美国科学家Craham Quick就将油脂与甲醇进行酯交换得到了脂肪酸甲酯,并成功代替石化柴油进行了柴油机的驱动实验(柴油机可正常工作1000h)21。与石化燃料相比,由天然油脂制备的生物柴油不仅具有和石化柴油相似的燃烧特性,而且其硫元素和芳烃类物质更是远低于石化柴油,因此燃烧时排放的废气的毒性将大大降低22。2生物质能的转化途径由于生物质原料种类繁多,结构复杂,在提取其贮藏的生物质
9、能时,往往需要采用一定程度上的化学、物理或生物的方法首先将生物质资源降解、转化后才能得到可被利用的生物质能23。目前来说,生物质能的主要转化工艺可分为甲烷化转化(纯生物法)、制备燃料乙醇(生化联合处理法)、热化学处理转化制备热能、合成气、液化油等和生物柴油制备等四大类方法24。具体如下:2.1甲烷化转化甲烷化转化法制备生物质能主要是指在厌氧条件下,使用相应的微生物对生物质原料进行处理,使其中的有机物在无氧条件下进行分解并产生甲烷气的方法25。厌氧发酵产甲烷的现象最早在废水处理厂和垃圾填埋场中被人们所发现。厌氧发酵产气过程可被分为四个阶段,具体为:目标有机质首先被水解为单糖、氨基酸以及短链脂肪酸
10、;然后经酸化转化为乙醇、丙酸、乙酸、乳酸等过程中间体以及代谢产物二氧化碳;在后续乙酸化阶段,其被进一步转化为乙酸和氢气、二氧化碳;最后,在嗜氢产甲烷菌和嗜乙酸产甲烷菌的作用下,将氢气/二氧化碳(30%)和乙酸(70%)分别转化为甲烷26。厌氧法发酵过程能耗较低、资金投入少。然而,整个过程中,发酵时间长、且处理时微生物代谢消耗的能量大,导致生物质被大量转化为代谢所需能量而被消耗,进而造成生物质能的转化效率大大降低,限制了该工艺过程的工业化应用。2.2制备燃料乙醇燃料乙醇是指以生物质为原料通过化学预处理联合生物发酵的方式将生物质蕴藏的化学能转化成作为燃料用的乙醇(又叫生物质乙醇)。其可经变性后以一
11、定比例添加到汽油中制备可驱动汽车内燃机工作的乙醇汽油27。按照目标生物质种类的不同,燃料乙醇制备技术可分为以淀粉为主的多糖生物质(如陈化粮)作为原料的第一代燃料乙醇制备技术,以及以木质纤维素(纤维素含量高,难以发酵降解)为主的第二代燃料乙醇制备技术28。目前,采用陈化粮等生物质制备燃料乙醇的发酵技术已经很完善,也已进入市场化运行阶段。但是,陈化粮发酵制备乙醇仅仅是为了解决国家储备粮食浪费,实现其资源化利用的问题;为保证制备大量的燃料乙醇,且实现不与人、畜争粮,不与民争地的局面,今后我国将针对以木质纤维素为原料的第二代燃料乙醇制备技术进行研发和产业化推广29。2.3热处理转化热处理技术替代时可以
12、克服生物质在发酵过程中存在的转化时间长、转化效率低的缺点30。如图1所示,根据空气的参与量,热处理主要可分为三大转化途径,即过量(充足)空气下的燃烧过程、部分空气参与下的气化过程以及无空气参与转化的热裂解(干法)与水热液化(湿法)过程31。具体如下:2.3.1燃烧富氧状态下的生物质燃烧产热能的过程在人类发现火种以来已经有上千年的利用历史,是指将生物质原料风干后直接在空气中进行燃烧使生物质所含的化学能转化为热能的过程32。然而,生物质的氧含量较高(热值较低)且密度较小,在现代工业中,不可能进行长距离运输以作为燃料使用。为解决生物质燃料密度低的缺点,已有许多科研人员和企业主进行了生物质成型燃料的研
13、究和产业化推广33。生物质成型燃料主要指的是以农林废弃物为主原料,经物理粉碎、挤压、烘干、冷却等工艺制成的高密度压缩成型燃料。该燃料具有热值高、燃烧充分、便于运输等优点,目前正处于推广阶段。2.3.2热裂解热裂解主要是指在缺氧或低氧环境下对干燥的生物质进行加热处理使其中的有机大分子物质(如木素、纤维素、半纤维素等)转化成低碳链的小分子化合物,如挥发酚类、醇类生物油或者合成气以及生物质焦炭等的过程34。热裂解法制备出的生物油的密度高且易于储存和运输,可作为石化燃料的替代品35。热处理过程虽然可以克服发酵产生物质能效率低下的缺点,但是在热裂解之前,往往需要将新鲜的自然状态下的生物质(含水量很高)进
14、行预先脱水干燥处理36。因此,在预干燥阶段会投入大量的能源,从而提高了生物质能的转化成本,限制了工业化应用范围。2.3.3液化液化指的是在一定的温度和压力下(如亚/超临界环境)、在无氧环境中(气氛为氢气、氮气等)将复杂的生物质大分子与溶剂(水、甲醇、乙醇、乙二醇等等)混合后在催化剂协同作用下制备出相应的液化油类产品的过程37。与此同时,液化过程中还伴随着少部分气体(如二氧化碳、一氧化碳等)以及固体剩余物(液化半料、生物炭等)等副产物的生成38。与热裂解类似,生物质在液化过程中首先被降解为有机小分子物质(果糖、葡萄糖、木糖以及相应寡糖、有机酚类小分子碎片等等),整个过程包括水解、解聚、脱水、加氢
15、、脱氧、去芳构化等等化学反应。液化后,以纤维素、半纤维素以及木素为代表的生物质原料被转化为乙醇醛、羟甲基糠醛、乙酰丙酸、-戊内酯、杂酚油等等39,40。生物质在亚/超临界体系下的催化液化过程中,溶剂常常扮演着重要的角色41。一般情况下,溶剂不仅仅起到反应载体的作用,而且也可作为反应物参与液化42。其中,在亚/超临界水体系中液化时,由于天然生物质含水量特别高,以水为溶剂时,既不需要外加水源而且也不需要对湿原料进行干燥处理,进而大大降低了能耗,从而有利于该生物质能转化技术的工业化推广43。对于以甲醇、乙醇等醇类溶剂为主的液化转化工艺,由于溶剂的临界温度和压力比水的更低,因此能保证在较温和的条件下将生物质原料进行降解,能耗相对较低。此时,所得液化油中的有机组分的分子量相对较大,且包括溶剂在内的液体混合物可不经过分离而直接作为液体燃料或与石化汽油混合使用,进而避免了后期分离和使用成本的增加。2.3.4气化气化转化主要是指在较高温度下直接将生物质催化转化成H2、CH4、CO等可燃气体以及CO2的过程44。生物质的气化转化过程主要可分为三个阶段,即:脱水干燥(去除游离水和内结合水)、热降解(转化为挥发性有机小分子)以及气化(转化为H2、CO、CH4和小分子烃类等气体)45。与热裂解和液化类似,气化技术也是将低质量和能量密度的生物质转化为能量密度大的便于运输的气体燃料的生物质能转化方法40