藻类制氢的技术实现途径与应用前景展望.doc
《藻类制氢的技术实现途径与应用前景展望.doc》由会员分享,可在线阅读,更多相关《藻类制氢的技术实现途径与应用前景展望.doc(5页珍藏版)》请在第一文库网上搜索。
1、藻类制氢的技术实现途径与应用前景摘要:对氢能的优势以及藻类制氢技术进行了介绍,重点针对藻类制氢技术的实现途径进行了阐述,并描绘了其与能源可持续发展的联系。同时,提出了其当前面临的技术难点,对其未来发展前景进行了展望。尽管仍有待于进一步完善,但在当前的能源环境背景下,藻类制氢技术有着广阔的应用前景,对其开展深入研究有着长远的实际意义。引言为了实现可持续发展,找到充足的清洁能源供应为当前面临的最大的技术挑战之一,能源发展与全球局势稳定、经济繁荣、生活品质有着密切联系。就目前而言,日常生活中的大部分能量供给均由化石能源提供。不断增长的能源需求会加速有限的化石能源的枯竭,作为世界主要的石油出口国之一的
2、阿拉伯联合酋长国,至2040年左右,其石油与天然气将无法满足日渐增长的需求。化石燃料在燃烧过程中除了释放温室气体CO2之外,其所产生的空气污染物还会包括NOx、SOx、CO、固体颗粒物及具有挥发性的有机化合物,以此会对大气造成严重污染。化石燃料除了在日渐减少的同时,也增加了大气环境中CO2的含量。在过去的数年中,针对未来可利用的能源开展了研究,重点为能实现可持续发展的替代能源,主要包括氢能、生物能、风能、核能、太阳能等。1氢能与藻类制氢技术H2由于其可再生性、燃烧过程不会产生温室气体CO2,燃烧时能量密度较高,以及可通过燃料电池转换为电能等优势,通常被视为一类充满应用前景的清洁能源。早在20世
3、纪90年代末期,可持续产氢技术有了显著突破,但目前其仅限于在实验室内部的小规模生产,尚无法得以大规模商业化。目前,自然界存在的光解水反应及氢化酶物质。O2对氢化酶的功用会产生一定的负面影响,同时会对氢化酶产生抑制影响。藻类是最古老的生命形式之一,是植物中的一类,具有叶状体结构及可再生细胞,同时,可利用叶绿素a作为主要的光合作用色素。藻类的组织构造主要可为细胞自身生长转化能量,此类简单的生产模式可使其在适应环境条件及繁衍发展过程中具有一定优势。藻类可从自然界中大量获取,并通过高效的光合作用产生燃料H2。以绿藻为例,其可在理想的生长环境中以极高的速率生产。目前,主要的制取氢方式电解水和富氢化合物催
4、化重整,均须通过大量能量的输入方可实现,就目前的生物制氢技术而言,其可通过微生物将生物质或太阳能转换为H2。藻类制取的H2主要基于光合作用的光对水分子的光解反应。可制取H2的微生物通常包括来自真核生物与原核生物不同属性的上百种物种。产氧光合作用生物体可利用水作为光合作用的质子与电子来源。在该类生物体中仅有绿藻和蓝藻能具备持续生产H2的能量。通过藻类生物质生产氢能过程通常包括2类:热化学过程和生物过程。热化学过程通常有4种:燃烧、高温分解、液化和气化。生物过程通常有5种:直接生物光解、间接生物光解、生物水气转换反应、光发酵和暗发酵。采用藻类制氢的技术主要为直接生物光解及间接生物光解2类。2直接生
5、物光解技术直接生物光解以藻类将水分子直接分解为H2和O2的能力为基础,通过水分解过程提取的质子和电子,被一种叶绿体氢化酶重新组合成氢分子,其纯度可达到98。依靠光合作用的绿藻和蓝藻均为可持续制氢的起点。将太阳能变为氢能的转化始于天线色素,例如叶绿素、类胡萝b素及藻胆体。包括绿藻在内的大多数产氢光合生物体中,捕光色素通常含有2个光系统Ps 及PS 。但同时由于绿藻中可逆的氢化酶对O2高度敏感,酶的活性在片刻内会不可逆性地失活。因此,藻类养殖中通过水直接光解产生H2较难持续。目前为止,氢化酶对一般光合作用产生O2的敏感现象,限制了绿藻在制氢系统应用的可能性。化学和机械的方法均被应用于移除藻细胞光合
6、作用中产生的O2。相关方法包括:(1)添加O2清除剂;(2)使用附加的还原剂;(3)用惰性气体净化培养。但是上述方法的技术弊端在于大规模应用成本过高,应用于生产系统的可能性较小。3间接生物光解技术氢化酶对O2的敏感问题可通过分离水解反应等方式进行解决。目前,已经开发了诸多不同的间接生物光解方法。但在大多数的方法中,第一步是促进光合生物体大量生长,以获得富含碳水化合物的物质,固定CO2,提供生物质并存储碳水化合物;第二步通常为生物质发酵制氢,利用该类存储物生产H2。通常情况下,藻类会处于无硫的反应条件下,导致厌氧条件的产生,从而刺激H2的持续产生。但该过程不如直接生物光解反应的效率高。间接生物光
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 藻类 技术 实现 途径 应用 前景 展望