复杂污染场地的风险管理挑战及应对.doc
《复杂污染场地的风险管理挑战及应对.doc》由会员分享,可在线阅读,更多相关《复杂污染场地的风险管理挑战及应对.doc(12页珍藏版)》请在第一文库网上搜索。
1、复杂污染场地的风险管理挑战及应对摘要:复杂污染场地中土壤和地下水介质的非均质性、污染物形态归趋变化的复杂性是导致复杂污染场地调查、风险评估与修复过程存在较大不确定性的主要原因. 基于侵入式采样和实验室样品分析等高成本调查技术无法理想反映复杂场地的真实污染分布,简单的定值风险评估结果则具有较大的不确定性,线性化场地管理技术体系不能适应复杂污染场地风险管理面临的不确定性挑战. 结合国内外实践经验,本文提出“二精一优”的场地风险管理技术方法体系,即:基于“有效数据理论”的定量测试与半定量实时监测技术相结合的精准调查技术;基于污染物形态归趋规律,综合采用基于生物有效性、多证据和概率分析等多种手段的精细
2、化风险评估技术;动态调整优化的非线性场地风险管理技术框架.关键词:污染场地;风险管理;不确定性;非均质性;形态归趋;多证据分析20世纪90年代以来,中国社会经济发展迅速,城市化进程加快,产业结构调整深化,许多位于城市中心区的工业企业陆续搬迁、停产和退出. 工业企业的停产搬迁遗留了大量污染土地,如重庆市20072010年调查的200多家搬迁企业中,有35.7%受到污染并需要进行治理. 北京市20072014年的搬迁场地中,有25%需要进行治理修复. 根据北京、重庆场地调查确定的污染场地比例以及参考欧美国家查明的污染场地的量,粗略估计中国污染场地总数可能为50104100104块. 由于对搬迁遗留
3、场地再利用的环境和健康风险认识不足,导致了一些公众事件的发生,如2004年北京宋家庄地铁建设过程中工人中毒,2006年武汉三江航天地产建筑工人中毒,2016年常州常隆化工污染场地,杭州某农药厂修复过程的刺鼻毒气散发对周边人群的影响等. 这些由污染场地引发的公众健康问题已成为中国城市土地开发再利用的重要环境风险问题,引起了高度的社会关注.2004年6月1日,原国家环境保护总局印发了关于切实做好企业搬迁过程中环境污染防治工作的通知(环办200447号),要求关停或破产企业在结束原有生产经营活动、改变原土地使用性质时,必须对原址土地进行调查监测,这标志着我国污染场地环境管理工作的正式启动. 近年来,
4、我国密集颁布了相关法律法规和技术标准,建立了基于风险的场地污染调查、评估与修复管理技术体系. 该风险管理技术体系主要建立在以下两个假设:场地土壤和地下水介质是均质的;场地风险主要取决于污染物总量. 但复杂场地的土壤和地下水介质往往为非均质,场地风险不仅与污染物的浓度相关,而且与污染物在场地中的形态归趋密切相关. 该文将重点讨论复杂场地土壤和地下水介质非均质性和污染物形态归趋对场地调查、风险评估与修复的影响,在此基础上,提出了耦合精准调查、精细化风险评估和动态优化的风险管理技术体系,以期为科学合理制定我国场地环境管理技术和政策提供支撑.1 介质非均质性与污染物形态归趋复杂性对场地风险管理的影响1
5、.1场地土壤和地下水介质的非均质性1.1.1对场地调查的影响建设用地土壤污染风险管控与修复监测技术导则(HJ 25.22019)规定采样网格不大于40 m40 m,建设用地土壤环境调查评估技术指南(原环境保护部公告2017第72号)要求在污染区域采样密度为20 m20 m,其采样技术要求采用侵入式钻探手段获取土壤和地下水样品,并要求将实验室的分析数据用作调查评估的唯一依据,这些技术要求均建立在场地污染物在均质土壤和地下水中迁移的理论基础之上,即污染物释放进入场地土壤和地下水后,从源向四周或下游迁移扩散,浓度从中心逐渐向四周或下游呈有规律的梯度降低趋势,因此可以采取较少的代表性样品通过插值方法确
6、定场地污染物的空间分布. 但是,Jenkins等通过在1.22 m直径范围内以图1(a)所示位置采集7个TNT污染土壤样品,采用现场和实验室两种方式对TNT浓度进行检测,发现虽然每个样品间距不足0.7 m,但其浓度差异却达19倍见图1(b). 而且,该研究表明采样过程与测试方法导致的结果差异仅占5%,土壤有机质含量、粒径分布等的空间异质性是导致TNT浓度分布差异显著的主要原因. 相较土壤而言,即使在扩散条件更有利的地下水中,污染物浓度的分布也存在较大差异. Guilbeault等在研究New Hampshire的某PCE污染场地时发现,在垂向15 cm和水平向1 m范围内,地下水中污染物浓度变
7、化范围为0148 000 g/L. Stephen研究表明,含水层污染物浓度的差异主要是因为含水层介质渗透系数存在差异,如图1(c)所示,仅在20 cm的深度变化范围内,由于渗透系数的差异导致的污染物浓度变化就达4个数量级. 因此,由于实际场地土壤和地下水的非均质性,无论是土壤还是地下水,少量“代表性样品”难以反映场地中土壤和地下水污染分布状况.图1 非均质性对土壤污染物分布的影响Fig.1 Contaminant concentration variability by matrix heterogeneity1.1.2对风险评估的影响张大定等研究表明,介质的非均质性对风险评估有较大影响,该
8、研究以某化工污染场地为例,土壤有机质含量、土壤含水率和土壤容重变化范围分别为0.31%2.31%、12%25%和1.251.75 g/cm3. 土壤有机质含量高,导致吸附在土壤固相中的污染物质量分数较大,气相中的质量比例相对较低. 同样,土壤理化性质也将影响土壤中固-液-气之间的相分配. 假设污染物浓度不变的情况下,10 000 次蒙特卡罗模拟结果表明,在95%置信水平下,该场地苯的总致癌风险(概率值)在1.4510-52.7410-5之间,土壤有机质含量是影响苯风险不确定性的最主要因素,其对风险评价结果不确定性的贡献率高达90.2%,土壤含水率和土壤容重的贡献率分别为5.6%和4.2%. 但
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复杂 污染 场地 风险 管理 挑战 应对