《指数函数与对数函数》第11课时 用二分法求方程的近似解.docx
《《指数函数与对数函数》第11课时 用二分法求方程的近似解.docx》由会员分享,可在线阅读,更多相关《《指数函数与对数函数》第11课时 用二分法求方程的近似解.docx(6页珍藏版)》请在第一文库网上搜索。
1、45.2用二分法求方程的近似解一、内容与内容解析1内容利用二分法求方程的近似解.2 .内容解析对于区间U上的连续不断且f()S)O的函数y=f(x),通过不断地把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到近似解的方法叫做二分法.二分法是求方程近似解的常用方法,这种方法由“区间”端点对应的数,研究“点”对应的具体的数:通过不断缩小“区间”,由“区间”左端点对应的单调递增(非严格)数列,以及右端点对应的单调递减(非严格)数列,不断逼近这一系列“区间”组成的区间套中的具体点对应的数.二分法的本质仍然是通过数的运算研究问题.二分法通过不断缩小函数零点所在区间求方程的近似解,体现
2、出用函数观点处理数学问题的思想和逐渐逼近的极限思想.从高中数学角度,二分法体现出函数在数学内部的应用.从函数零点与方程的解的关系,到函数零点存在定理,再到利用二分法求方程的近似解,学生经历了一个完整的利用函数研究问题和解决问题的过程.从中不但能体会到函数的工具性,还获得了从个别问题的解决过程提炼出一类问题的解决方法的经验,这对提高学生分析问题和解决问题能力,培养学生理性精神有一定的帮助.通过求具体方程的近似解了解二分法并总结其实施步骤,体现了由具体到一般的认知过程;在求方程的近似解的过程中,需要重复计算区间中点,以及中点的函数值,涉及到的较复杂的数据.因此本节课主要发展学生的数学抽象和数据处理
3、核心素养.教学重点:用二分法求函数的零点方的近似值的一般步骤.二、目标与目标解析3 .目标(1)通过求具体方程的近似解了解二分法,体会函数在解方程方面的应用,渗透极限思想.(2)通过总结二分法的实施步骤,使学生经历由具体到一般的认知过程,发展数学抽象核心素养,提高分析问题和解决问题的能力.(3)根据具体函数图象,能够借助信息技术用二分法求方程的近似解,发展数据处理核心素养.4 .目标解析达成上述目标的标志:(1)能够根据函数零点存在定理想到通过一分为二的逐渐缩小零点所在区间的办法,来求方程+2尸6=0的近似解,知道二分法是求方程近似解的常用方法.(2)能够根据求方程/依+2k6=0的近似解的过
4、程,提炼出利用二分法求函数加0的零点%的近似值的一般步骤.(3)能够借助信息技术,用二分法求具体方程的近似解.三、教学问题诊断分析(1)学生已经学习了零点存在定理,容易想到通过逐渐缩小函数零点所在区间的办法来求方程的近似解,对二分法的理解不存在困难.(2)学生还没有算法的基本思想,对于求近似值的问题也接触较少,因此在总结用二分法求函数零点近似值的一般步骤时,得出步骤3中的“令nc、“令4=c”和步骤4中的“若IadIV,则得到零点的近似值为“或。”可能会有些困难.因此本节课的教学难点为:根据求方程zu+2-6=0的近似解的过程,提炼出利用二分法求函数的零点X0的近似值的一般步骤.破解这个难点的
5、关键是,让学生用自己的语言准确描述求方程加x+2尸6=0近似解的每一步,理解精确度的含义,搞清楚其中循环的部分,明确循环结束的条件.(3)在利用二分法求方程近似解的过程中,数值计算较为复杂,这对获得给定精确度的近似值增加了困难.因此,本节课的另一个教学难点为:利用二分法求方程在给定精确度下的近似解.要破解这个难点,需要恰当的使用信息工具.四、教学过程设计(-)复习、引入问题、探讨方法复习I、函数的零点与方程的解的关系;2、判断在某个区间是否存在零点的方法(零点存在定理及其注意事项)引言:通过前一节课的学习,我们根据函数零点存在定理和函数单调性可以确定方程实数解的个数,今天进一步研究利用函数求方
6、程的近似解.问题h我们已经知道函数=a+2尸6在区间(2,3)内存在一个零点,如何求出这个零点?思考1:你能求出函数/2=加x+2尸6零点的精确值吗?为什么?师生活动:学生根据经验给出判断,教师补充.预设的答案:学生的回答是否定的,原因是方程加x+216=0没有求根公式.教师补充:大多数方程都不能像一元二次方程那样用公式求出精确解,在实际问题中,往往只需求出满足一定精确度的近似解.(“精确度为”的含义是:“近似值与精确值之差(即误差)不大于”)思考2:当精确度为0.5时,你能得到一个符合要求的零点的近似值吗?师生活动:学生思考和回答,教师启发学生说明理由,给出区间的中点的定义.预设的答案:零点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 指数函数与对数函数 指数函数与对数函数第11课时 用二分法求方程的近似解 指数函数 对数 函数 11 课时 二分法 方程 近似