动态子结构高效集成的主动力和界面力处理方法.docx
《动态子结构高效集成的主动力和界面力处理方法.docx》由会员分享,可在线阅读,更多相关《动态子结构高效集成的主动力和界面力处理方法.docx(11页珍藏版)》请在第一文库网上搜索。
1、动态子结构高效集成的主动力和界面力处理方法邹明松吴有生孙建刚Summary:在现有的船舶水弹性子结构分离与集成方法中,主船体结构的振动采用以模态广义坐标为变量的动力学方程进行描述,船内子结构的振动采用以空间物理位移为变量的动力学方程进行描述。通过两者的边界连接条件进行综合集成时,会遇到模态空间与物理空间的转换集成问题。针对该问题,提出了“虚拟模态”方法,一方面可以使动态子结构集成计算精确,另一方面可大幅减少子结构集成的计算量。理论上,该“虚拟模态”方法适用于其他领域类似的动态子结构集成计算问题。最后,通过数值算例,对该“虚拟模态”方法的正确性和适用性进行了验证。Key:结构振动;动态子结构方法
2、;流固耦合;船舶振动:0327; U661.44文献标志码:A : 1004-4523 (2019) 03.0439.05DOI: 10. 16385/ki. issn. 10044523. 2019. 03. 008引言动态子结构方法将复杂结构分解成一些较简单的子结构,根据子结构动态特性的计算或试验结果综合出整个复杂结构的动态特性。该方法已有较广泛而深入的研究与应用13。动态子结构方法可以基本分成两类,一类是模态综合法(包括固定界面模态综合法、自由界面模态综合法等),一类是界面位移综合法(包括界面位移直接综合法、聚缩阻抗矩阵综合超单元方法等)。其中第一类方法以模态坐标为待求量实现子结构之间的
3、综合集成,第二类方法以空间物理位移为待求量实现子结构之间的综合集成。为提高动态子结构方法的综合精度与计算效率以及扩展其应用范围,国内外开展了大量的研究,提出了多种在基本方法基础上的改进方法47。随着计算机水平的提升,动态子结构方法已应用于实船流固动力学分析中8。也有众多学者在流固耦合动态子结构方法的基础上,提出了多种新的思想。文献9将一个复杂的结构分解成主体结构和子结构两部分,考虑主体结构与流体介质的耦合作用,对于刚度、质量分布不确定的子结构采用概率统计的方法处理成模糊子结构(fuzzy structure) o文献1011提出将结构分解成高分辨率的局部子结构和低分辨率的主体结构,建立不同网格
4、尺度的有限元模型或者解析模型进行独立求解和集成。文献12在声介质中三维结构水弹性力学理论(即船舶三维声弹性理论)1314的基础上,提出了专门用于解决船舶等复杂海洋浮体结构声弹耦合问题的水弹性子结构分离及集成方法。该方法将船舶结构分解成主船体和内部子结构两部分,采用水弹性方法实现主船体与水介质的流固耦合求解,通过边界连接条件完成主船体与子结构的综合集成。该方法可避免因部分子结构的修改导致整个流固耦合模型重新计算的问题,且在建模方面也只要修改子结构本身,不牵涉主船体模型。因此,特别适用于处理船舶内部子结构(如横舱壁、铺板、基座等)振动噪声传递效果分析与优化的问题。经典的水弹性力学分析方法中1516
5、,选用具有正交完备性的干模态(结构在真空中的模态)作为广义基函数进行求解,具有物理概念清晰、易于求解和便于后续计算结果分析的优点。该方法在船舶流固耦合领域具有广泛的应用。同样,在船舶水弹性子结构分离及集成方法中,主船体结构的振动也采用以干模态广义坐标为变量的动力学方程进行描述。当船内子结构的振动采用以空间物理位移为变量的动力学方程进行描述,利用边界连接条件进行综合集成时,会遇到模态空间与物理空间的转换集成问题。文献12中的方法是直接将主船体与子结构连接部位的力平衡条件代入相应的矩阵方程中,最终形成可显示求解的矩阵方程维数较大;整个计算复杂度和计算规模均存在一定的优化空间。针对该问题,本文提出了
6、 “虚拟模态”方法,其实质是将主船结构上的主动力和界面力定义为广义坐标。该方法在实现主船体结构与内部子结构严格耦合的同时,使得最终形成的可显示求解的矩阵方程维数近似等于主船体结构与内部子结构之间的连接自由度数,从而使整个求解规模相对较小,计算效率大为提高。1基本方程推导如图1所示结构,由主体结构和内部子结构两部分组成。不失一般性,采用该模型论述“虚拟模态”方法的具体内容。1.1主体结构的动力学方程基于模态叠加方法,可得频域内以干模态主坐标为未知量的主体结构广义动力学方程一o2MA+i sCA+KAq=DTAFA1多数情况下,式(17)所示的矩阵维数近似等于主体结构与内部子结构之间的连接自由度数
7、,因此整个求解规模相对较小。多个内部子结构与主体结构集成耦合的操作过程与此类同。2算例验证采用图2所示的内部含基座(内部子结构)的弹性圆柱壳(主体结构)计算模型(图2中左侧部分只显示了该模型的左舷一半),验证上节中所述的基于“虚拟模态”方法的子结构动态集成的计算精度。模型位于空气中,圆柱壳的两端为简支边界条件,整个结构的密度为7800 kg/m3,杨氏模量为2. 1X1011N/m2,泊松比为0.3,阻尼损耗因子为0.02,具体尺寸参数如表1所示。在模型中的1号点上作用单位垂向简谐激励力,计算1号点和2号点的垂向振动速度响应。1号点位于基座面板的中部,2号点位于1号点正下方的圆柱壳中部。通过两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 动态 结构 高效 集成 主动 界面 处理 方法