最具潜力的电解水制氢技术PEM.doc
《最具潜力的电解水制氢技术PEM.doc》由会员分享,可在线阅读,更多相关《最具潜力的电解水制氢技术PEM.doc(12页珍藏版)》请在第一文库网上搜索。
1、最具潜力的电解水制氢技术PEM巴黎协定正加速全球能源体系从化石燃料为主向高效、可再生的低碳能源体系转型。氢气来源广泛,热值高,清洁无碳,可储能、发电、发热,灵活高效,应用场景丰富,被认为是推动传统化石能源清洁高效利用和支撑可再生能源大规模发展的理想能源载体,备受各国青睐。美国、日本、德国等发达国家高度重视氢能产业发展,已将氢能上升到国家能源战略高度,并推出相应的氢能发展规划和支持政策。根据国际氢能委员会Hydrogen Scaling Up报告,工业、交通、建筑供暖供电是氢能应用的重点领域,预测 2050 年氢能约占全球能源需求的 18%1。中国将氢能作为战略能源技术,给予持续的政策支持,推动
2、产业化进程。在政策、资金等多因素叠加催化下,近几年国内加氢站等基础设施、产业链关键技术与装备得到发展,形成长三角、珠三角、京津冀等氢能产业热点区域。中国氢能源及燃料电池产业白皮书(2019)预测 2035 年氢能占国内终端能源总量 5.9%,加氢站数量 1 500 座,燃料电池车保有量130万辆2。国内外油气公司,如壳牌、中石化等,将氢能作为企业转型的重要选择,正积极投资布局氢能产业。1氢气来源国际氢能委员会预测2030 年全球氢气需求总量约为 14 EJ(艾焦)1,炼油化工、合成氨等行业的氢气需求量最大。现有制氢工业体系已非常成熟,全球超过 95%的氢气采用化石燃料生产,蒸汽-甲烷重整是最主
3、要的制氢方式,占比约 48%,其次是石油、煤炭气化制氢,另外大约有 4%的氢气通过水电解获得3。中国是目前世界上最大的制氢国,现有工业制氢产能约 2 500 万 t/a,其中煤制氢产能约 1 000 万 t/a,占比最大,其次是工业副产氢约 800 万 t/a4。化石能源重整制氢技术成熟、规模大、成本低,但 CO2 排放量大(表 1)5。而近几年的国际氢能发展热潮,与利用氢能降低碳排放、进一步发展可再生能源的愿景密切相关,显然化石燃料制氢不能达到预期目标。氢气作为能源载体,将在全球能源转型中与电力互为补充。水电解制氢被认为是未来制氢的发展方向,特别是利用可再生能源电解水制氢,具备将大量可再生能
4、源电力转移到难以深度脱碳工业部门的潜力,成为各国瞄准的方向和攻关重点。2水电解制氢水电解制氢是指水分子在直流电作用下被解离生成氧气和氢气,分别从电解槽阳极和阴极析出。根据电解槽隔膜材料的不同,通常将水电解制氢分为碱性水电解(AE)、质子交换膜(PEM)水电解以及高温固体氧化物水电解(SOEC)。2.1碱性水电解制氢碱性水电解制氢电解槽隔膜主要由石棉组成,起分离气体的作用。阴极、阳极主要由金属合金组成,如Ni-Mo合金等,分解水产生氢气和氧气。工业上碱性水电解槽的电解液通常采用KOH溶液,质量分数20%30%,电解槽操作温度7080,工作电流密度约0.25 A/cm2,产生气体压力0.13.0
5、MPa,总体效率62%82%。碱性水电解制氢技术成熟,投资、运行成本低,但存在碱液流失、腐蚀、能耗高等问题。水电解槽制氢设备开发是国内外碱性水电解制氢研究热点。2.2PEM 水电解制氢区别于碱性水电解制氢,PEM水电解制氢选用具有良好化学稳定性、质子传导性、气体分离性的全氟磺酸质子交换膜作为固体电解质替代石棉膜,能有效阻止电子传递,提高电解槽安全性。PEM水电解槽主要部件由内到外依次是质子交换膜、阴阳极催化层、阴阳极气体扩散层、阴阳极端板等(图1)。其中扩散层、催化层与质子交换膜组成膜电极,是整个水电解槽物料传输以及电化学反应的主场所,膜电极特性与结构直接影响PEM水电解槽的性能和寿命。与AE
6、制氢相比,PEM水电解制氢工作电流密度更高(1 A/cm2),总体效率更高(74%87%),氢气体积分数更高(99.99%),产气压力更高(34 MPa),动态响应速度更快6(表2),能适应可再生能源发电的波动性,被认为是极具发展前景的水电解制氢技术。目前PEM水电解制氢技术已在加氢站现场制氢、风电等可再生能源电解水制氢、储能等领域得到示范应用并逐步推广7。过去5年电解槽成本已下降了40%8,但是投资和运行成本高仍然是PEM水电解制氢亟待解决的主要问题,这与目前析氧、析氢电催化剂只能选用贵金属材料密切相关。为此降低催化剂与电解槽的材料成本,特别是阴、阳极电催化剂的贵金属载量,提高电解槽的效率和
7、寿命,是PEM水电解制氢技术发展的研究重点。2.3高温固体氧化物水电解制氢不同于碱性水电解和PEM水电解,高温固体氧化物水电解制氢采用固体氧化物为电解质材料,工作温度8001 000,制氢过程电化学性能显著提升,效率更高。SOEC电解槽电极采用非贵金属催化剂,阴极材料选用多孔金属陶瓷Ni/YSZ,阳极材料选用钙钛矿氧化物,电解质采用YSZ氧离子导体,全陶瓷材料结构避免了材料腐蚀问题。高温高湿的工作环境使电解槽选择稳定性高、持久性好、耐衰减的材料受到限制,也制约SOEC制氢技术应用场景的选择与大规模推广9。目前SOEC制氢技术仍处于实验阶段。国内中国科学院大连化学物理研究所、清华大学、中国科技大
8、学开展了探索研究。国外SOEC技术研究集中在美国、日本和欧盟,主要机构包括三菱重工、东芝、京瓷、爱达荷国家实验室、Bloom Energy、托普索等,研究聚焦在电解池电极、电解质、连接体等关键材料与部件以及电堆结构设计与集成10。3.PEM水电解制氢技术研究与应用进展3.1PEM 材料研究作为水电解槽膜电极的核心部件,质子交换膜不仅传导质子,隔离氢气和氧气,而且还为催化剂提供支撑,其性能的好坏直接决定水电解槽的性能和使用寿命。目前水电解制氢所用质子交换膜多为全氟磺酸膜,制备工艺复杂,长期被美国和日本企业垄断,如科慕Nafion系列膜、陶氏XUS-B204膜、旭硝子Flemion膜、旭化成Aci
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 潜力 电解水 技术 PEM