污水处理实现碳中和的技术路径.doc
《污水处理实现碳中和的技术路径.doc》由会员分享,可在线阅读,更多相关《污水处理实现碳中和的技术路径.doc(7页珍藏版)》请在第一文库网上搜索。
1、污水处理实现碳中和的技术路径自我国提出2060年全社会争取实现“碳中和”目标后,各行各业对“碳中和”的讨论持续高涨、热度不减。一方面,这无疑推动了“碳中和”概念和知识的推广宣传,大大推动了“碳中和”构建的第一阶段目标进程明晰什么是“碳中和”,即“知其然”!另一方面,随着对“碳中和”概念的不断理解和清晰,对如何实现行业“碳中和”也打上了大大的问号。对于污水处理厂来说,尽管国外已经存在完全实现“能量平衡”或“碳中和”运行的污水处理厂实际案例,但国内依然存在对污水处理厂能否实现“碳中和”的担忧和质疑。从技术角度讲,通过能量回收直接反哺或间接补偿污水厂的碳排量是实现“碳中和”的主要方式,而这些担忧和质
2、疑大多聚焦于“污水处理厂真的有那么多可回收能量去实现碳中和吗?”正所谓“知其然更应知其所以然”,只有厘清了污水处理厂可用的“家底”(能量)才能更有信心地朝着“碳中和”方向努力。实际上,“中-荷中心”团队负责人郝晓地教授早在2010年就已经对污水处理厂可用的“家底”和能否支撑“碳中和”的实现进行了较为详细的前瞻性探究,当下对污水处理厂仍然具有非常大的指导意义。因此,本文基于团队2015年的一项工作,同大家分享并厘清国内污水处理厂实现“碳中和”的可用能量来源以及相应的技术思路。提到污水中的能量,人们往往首先想到的即是污水中的有机物(COD),而回收这部分能量最简单的方式就是对污泥实施厌氧消化,产生
3、甲烷后用于热电联产,以此减少污水厂对外部能源的需求,继而间接降低CO2的排放量。理论上讲,生活污水中所含的有机物能量可达污水处理消耗能量的910倍,这一振奋人心的“家底”能否助力污水厂实现“碳中和”呢?除此之外,污水处理厂生物处理池及初沉池、二沉池等单元具有庞大的表面面积,这似乎为太阳能光伏发电创造了必要的场地条件。如果光伏组件能被巧妙地布置在这些处理单元上,不仅可以向楼宇屋面一样实现太阳能发电,而且还能在冬季时利用光伏板来覆盖这些处理单元,实现对生物处理的保温作用和臭气收集。那“太阳能”会成为污水厂实现“碳中和”的实力担当么?另外,市政污水本身具有流量稳定、水量充足、带有余温等特点。如果向污
4、水处理厂引入水源热泵技术进行热能的提取回收,潜力会有多大呢?带着这些思考和疑问,我们选取了北京某污水处理厂为例,对其厂内这三种“家底”(图1)的可用潜力进行了匡算分析。1. 进水有机物能量回收潜力为匡算进水中有机物浓度与通过厌氧消化可回收的有机物能量,我们以物料平衡为基础,将水质与能量指标进行耦合,构建了能量平衡模型和分析函数,以评价污水处理厂能量消耗与回收之间的平衡情况。模型的输入变量如表1所示,包括进出水水量/水质和污泥量/有机质含量共计12个参数。能量相关的过程单元则包括了提升水泵、曝气系统和厌氧消化池加热系统导致的能量消耗,以及污泥厌氧消化/热电联产产生的能量补偿。模型构建完毕后,我们
5、对案例水厂实际运行的能量状况进行了评价分析。图2是案例污水厂的工艺流程和部分点的实测参数,模型匡算结果总结于表2中。由结果可知,经过模型计算得到的提升泵和鼓风机能耗数值(147000 MJ/411429 MJ)与实测数值(142560 MJ/379209 MJ)相差不大,但通过污泥厌氧消化回收的有机物能量(425848 MJ)却远远高于实测数值(107142 MJ),这是因为案例污水厂2010年消化池平均进泥量仅为340 m3/d,仅占设计进泥量的12%,如果按照2010年产气效率计算,当进泥量达到设计值时,甲烷产量与模型计算结果也近乎一致。可见,本研究构建的模型计算结果是可信的。从最终的能量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 污水处理 实现 中和 技术 路径