《基于数据挖掘探析柳宝诒治疗痢疾的用药规律.docx》由会员分享,可在线阅读,更多相关《基于数据挖掘探析柳宝诒治疗痢疾的用药规律.docx(9页珍藏版)》请在第一文库网上搜索。
1、基于数据挖掘探析柳宝诒治疗痢疾的用药规律孙小娟(陕西中医药大学陕西咸阳712046)摘要:目的:探析出柳宝诒治疗痢疾的用药规律。方法:本文所采用的研究方法选用统 计出温病学流派医案六、柳选四家医案中有关治疗痢疾处方所含中药,并将药物名 称进行规范化处理,从而便于分别查处其药性、四气、五味及归经,进一步借助MiCrOSOft Excel 2016、SPSS Statistic 26.0、SPSS Modeler 14. 1 软件建立痢疾用药数据库,对药 物频数、高频用药关联、聚类分析。通过对众多中医名家治疗痢疾所用处方采用多种数据分 析软件相结合方式进行数据深挖后,结果:整理柳宝诒处方64首,使
2、用中药141味,其中 24味高频药物(频率大于15%)。高频药物:木香、当归、枳壳、白芍、砂仁、茯苓、白术、 黄苓、荷叶、山楂、神曲、赤芍、陈皮、藕、炙甘草、桔梗、牡丹皮、厚朴、川茸、党参、 地黄、荷叶蒂、黄连、黄茂。关联分析:当归T赤芍,木香T赤芍,木香T枳壳+当归,木香 T赤芍+当归等17对药物关联。聚类分析得出5组多味药物的聚合组及10组药对聚合组。 C1:枳壳、桔梗、山楂、赤芍、藕、木香、黄琴、当归、地黄、牡丹皮;C2 :荷叶、神曲; C3:厚朴、黄连、陈皮;C4:砂仁、茯苓;C5:白术、党参、炙甘草、黄茶、白芍、荷叶蒂。 药对聚合组:A1:枳壳、桔梗;A2:山楂、川萼;A3:赤芍、藕
3、;A4:当归、地黄;A5:荷 叶、神曲;A6:黄连、厚朴;A7:砂仁、茯苓;A8:党参、白术;A9:炙甘草、黄茶;A10: 白芍、荷叶蒂。结论:通过对众多痢疾用药处方进行数据纵深挖掘后,得出了柳宝诒治疗痢 疾显著用药特点及规律对临床治疗痢疾提供了有力的理论指导。Abstract: Objective: To explore the rule of Iiu Baoyi,s treatment of dysentery. Methods: The research method adopted in this paper is to select the statistics of TCM in
4、the relevant dysentery prescriptions in the medical Case of The School of Febrile Diseases and the Medical Case of the Four Families of Liu Xuan, and to standardize the drug names, so as to facilitate the investigation of their properties, four qi, five tastes and meridian. Further, using Microsoft
5、Excel 2016, SPSS Statistic 26.0 and SPSS Modeler 14.1 software, the dysentery medication database was established, and the drug frequency and high frequency medication association and cluster analysis were performed. The results showed that 64 prescriptions of Liubao,s history were collated and 141
6、traditional Chinese medicines were used, among which 24 were high frequency medicines (frequency more than 15%).High-frequency drugs: Radix Aucklandiae, Angelica, Fructus aurantii9 Radix paeoniae9 Amomum, Poria cocos, Atractylodes atractylodes, Scutellaria baicalensis, Lotus leaf, Hawthorn, Holy Spi
7、rit, radix paeoniae, Tangerine peel, Lotus root, processed glycyrrhiza, Radix platycodon, Cortex moutan, Magnolia officinalis, Ligusticum chuanxiong, Codonopsis pilosula, Rehmannia glutinosa, Rhizoma coptidis, Astragalus membranaceus. Association analysis: 17 pairs of drugs were associated with ange
8、lica radix paeoniae5 radix Cinnamomum Radix paeoniae9 radix Cinnamomum Fructus aurantii + Angelica, radix Cinnamomum Radix paeoniae + Angelica. Cluster analysis showed that 5 groups of multiflavor drug aggregation group and 10 groups of drug pair aggregation group. Cl: Fructus aurantii, Radix platyc
9、odon grandiflorum, Hawthorn, peony root, Lotus root, radix aucklanicum9 Scutellaria baicalensis9 Angelica, Rehmannia glutinosa9 cortex moutan; C2: Lotus leaf, Divine Comedy; C3: Magnolia officinalis, Coptis chinensis, tangerine peel; C4: Amomum, Tuckahoe; C5: Atractylodes atractylodes, Codonopsis pi
10、losula, prepared glycyrrhiza, Astragalus membranaceus, Paeonia alba, Lotus leaf root. Drug pair polymerization group: Al: Fructus aurantii, Platycodon grandiflorum; A2: Hawthorn, Iigusticum Chuanxiong; A3: Peony root, lotus root; A4: Angelica, rehmannia glutinosa; A5: Lotus leaf, Divine Comedy; A6:
11、Rhizoma coptidis, Magnolia officinalis; A7: Amomum and Tuckahoe; A8: Codonopsis pilosula, Atractylodes macrocephala; A9: Prepared glycyrrhiza and Astragalus; AlO: Peony root and lotus leaf root. Conclusion: Through in-depth data mining of many dysentery prescriptions, the characteristics and rules o
12、f Iiubao yir,s treatment of dysentery were obtained, which provided strong theoretical guidance for clinical treatment of dysentery.关键词:数据挖掘;柳宝诒;痢疾柳宝诒是晚清著名的温病大家,享誉江浙两地,其临证不拘于一家之言,博 采众长,独具特色。其在论治伏气温病的方面造诣颇高,他对药材炮制要求颇为 严格,并自设药堂“柳致和堂”,将其常用的丸散膏编成柳致和堂丸散膏丹释 义。柳氏不单医术精湛,且德艺双馨,其胸怀大志、胸襟广阔,不将自家医学 所成拘于自家之内,而旨在将
13、自己所成流传并发扬光大,造福更多患者,让其早 日摆脱病痛,因此柳氏广招学生门徒,其学生中不乏后世名医,如:赵静宜、郭 晋丰、王吉臣等。其著作柳宝诒医案、柳宝诒医论医案均被收录于温 病学流派医案六之中。柳选四家医案中柳氏注解详细,淋漓尽致地 体现了柳氏对前人医家医案病因、病机、方药点评注解,意见简明中肯,对于临 床施治具有显著实践指导作用,与此同时亦体现了柳宝诒的用药思想,其对后世 学习柳宝诒中医医治学术思想具有重要参考意义。1 .资料与方法1.1 处方来源及筛选标准对温病学流派医案六、柳选四家医案中治疗首诊痢疾处方进行统 计并整理,排除了只有方剂名称而无具体方药的处方及疟疾后期形成痼的处 方,
14、所选医案症状、药物组成完整的处方进行研究,其中包括:方药完整,虽无 方名,但组方明确,可在柳致和堂丸散膏丹释义查询到组方者。1. 2数据处理将64首处方中的141味药物,根据中国药典、中华本草、中 药大辞典中药进行规范化命名,其中将红枣更名为大枣,川朴更名为厚朴, 东白芍更名为白芍,淡黄苓更名为黄苓,龟板更名为龟甲,菟丝饼更名是为菟丝 子,苍术炭更名为苍术,地榆炭更名为地榆,枳实炭更名为枳实,杞子更名为枸 杞子,熟地更名为熟地黄,椿根皮炭更名为椿皮,蛀屑更名为柳屑等,因柳屑在 中国药典、中华本草、中药大辞典并未查到其归经,故根据其功效 归为肝经。2. 3建立数据库将64首处方中的141味药物按
15、药名、性味、归经分类进行统计,运用 Microsoft Excel 2010专业版建立的数据库分析用药频率;运用SPSS Modeler 14. 1软件对数据资料进行关联分析,其中药物关联分析(设置最小支持度10%, 最小置信度90%,最大前项数为2),运用SPSS Statistic 26. 0软件对数据资 料进行聚类分析,结果以树状图展示。2结果2.1 用药频次运用MiCrOSOft Excel 2010数据处理软件,对柳宝诒治疗痢疾64首处方中使用的141味药物进行统计分析,得出使用频次10以上的药物为高频 药物,共24味药,频率从高到低依次为木香、当归、枳壳、白芍、砂仁、茯 苓、白术、黄苓、荷叶、山楂、神曲、赤芍、陈皮、藕、炙甘草、桔梗、牡丹皮、厚朴、川茸、党参、地黄、荷叶蒂、黄连、黄芭。如表1 表1处方高频高频药物(频率三15)药物频次频率(%)药物频次频率 (%)木香4367. 19陈皮1625. 00当归3960. 94藕1523.44枳壳3148.44炙甘草1523.44白芍3046. 88桔梗1320. 31砂仁2742. 19牡丹皮1320. 31茯苓2539. 06厚朴1218. 75白术2437. 50川茸1117. 19黄苓2234. 38党参1117. 19荷叶1929. 69地黄1015. 63山楂1929. 69荷叶蒂