好玩而神秘的杨辉三角和幻方.docx
《好玩而神秘的杨辉三角和幻方.docx》由会员分享,可在线阅读,更多相关《好玩而神秘的杨辉三角和幻方.docx(3页珍藏版)》请在第一文库网上搜索。
1、好玩而神秘的杨辉三角和幻方在数学中,幻方蕴涵的哲理思想是最为丰富的。?易经?是一本哲学 书,它几乎影响了国内外的各种哲学思想。而易学家们通过多方面研究发 现,易学来源于河图洛书,而洛书就是三阶幻方。幻方的布局规律、构造 原理蕴涵着一种概括天地万物的生存结构,是说明宇宙产生和开展的数 学模型。河图可看成是二阶幻方模型,洛书是三阶幻方,由于它们流传甚广,从 古到今给人们许多科学的启迪。例如,爱因斯坦的?相对论?,运用了 11 个公式推算时空相对增减元数,而河洛数对他很有启发。幻方因具有一种自然的属性,虽是数字关系,但往往抽象概括性特强, 当人们反复深思以后,就有可能对某个科学理论激发出灵感来,从而
2、推 动其开展。在中国的传统文化中,我们能够看到洛书运用于军事、中医、 天文、气象、气功等领域的大量资料,说明幻方与各种学科的密切关系是 不可无视的。幻方已应用于“建路、”爵当曲线、“七座桥等的位置解析学及组 合解析学中。幻方引出了拉普拉斯的导引系数和哥斯定理、格里定理、斯 笃克定理,还引出了普生、布鲁汀两氏的电子方程式。幻方还引出了桑南 的自动控制论,从而促成了电子计算机的诞生,电脑有三个来源,即二 进制(八卦)、算盘和幻方。电子科学已把幻方的排列路线看成是一理想的 电子回路网图形,可以想象,由幻方得到的无穷嵌套的结构具有自相似性(外观的或内在 的),可看作是一种全息对应结构。以幻方为控制网数
3、据矩阵而生成的 Bezier-Bernstein曲面,具有单向积分不变的特性,而其他熟知的逼近 方式,如B样条插值或磨光、Iagrange插值等,皆不具备这一性质。? 计算机网络拓朴结构共有五种,它们各有优缺点,但当我们思考五阶完 美幻方的结构后,五种网络结构可融为一体,有可能成为最完美的网络 体系结构,而且它有些象我们人体中的“五行体系如果一个nn矩阵的每行,每列及两条对角线的元素之和都相等,且这 些元素都是从1到nn的自然数,这样的矩阵就称为n阶幻方。三阶幻方就是n=3时的幻方,如下面这个矩阵294753618幻方,在我国也称纵横图,它的神奇特点吸引了无数人对它的痴迷。从我 国古代的“河出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 好玩 神秘 三角