排列教学设计(3课时).docx
《排列教学设计(3课时).docx》由会员分享,可在线阅读,更多相关《排列教学设计(3课时).docx(8页珍藏版)》请在第一文库网上搜索。
1、2-3:1.2.1排列(3课时)课标要求:通过实例,理解排列的概念,能利用计数原理推导排列数公式,并能解决简单的实际问题。教材分析:分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上
2、来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.学生分析:学生刚刚学过分类计数原理和分步计数原理;并且原来高一学习必修三概率时已经初步掌握用列举法计算排列的个数问题;,对于简单的,数字少的排列组合,学生是没有问题的,但是到复杂一点的,学生就容易出错,学生运用数学知识解决实际问题的能力还不强,要么漏算要么重复算,分类讨论不清,解题书写不规范,必要的文字缺少。教学目标1 .知识与技能(1) 了解排列数的意义,掌握排列数公式及推导方法;(2)体会“化归”的数学思想,并能运用排列数公式进行计算;(3)运用所学的排列数公式,解决简单的排列实际问题。2.过程与方法(1)在教师指
3、导下,尝试从实际例子推导出排列数公式;(2)认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,(3)注重解题方法的归纳与总结,真正提高分析、解决问题的能力。3.情感态度与价值观(1)用联系的观点看问题;(2)认识事物在一定条件下的相互转化;(3)解决问题能抓住问题的本质。通过设置丰富的问题情境,鼓励学生从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望。教学重点:排列、排列数的概念.教学难点:排列数公式的推导一、问题情景K问题从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多
4、少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素。K问题2.从Gd这四个字母中,每次取出3个按顺序排成一列,共有多少种不同的排法?分析:解决这个问题分三个步骤:第一步先确定左边的字母,在4个字母中任取1个,有4种方法;第二步确定中间的字母,从余下的3个字母中取,有3种方法;第三步确定右边的字母,从余下的2个字母中取,有2种方法由分步计数原理共有:4x3x2=24种不同的方法,用树型图排出,并写出所有的排列由此可写出所有的
5、排法bCdbdbCCdadaCbdadabbCaCab二、数学构建1.排列的概念:从几个不同元素中,任取加个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出加个元素的一个排列。说明:(1)排列的定义包括两个方面:取出元素,按一定的顺序排列;(2)两个排列相同的条件:元素完全相同,元素的排列顺序也相同2.排列数的定义:从个不同元素中,任取加(mV)个元素的所有排列的个数叫做从个元素中取出加元素的排列数,用符号表示注意区别排列和排列数的不同:“一个排列”是指:从个不素中,任取加个元素按照一定的顺序排成一列,不是数;“排数”是指从个不同元素中,任取加(m0,解得x13,又
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列 教学 设计 课时