【小升初专项训练】10 孙子定理.docx
《【小升初专项训练】10 孙子定理.docx》由会员分享,可在线阅读,更多相关《【小升初专项训练】10 孙子定理.docx(6页珍藏版)》请在第一文库网上搜索。
1、第13讲孙子定理第一关求被除数【知识点】1 .孙子定理的含义:也叫中国剩余定理.孙子算经中“物不知数”问题说:“今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”即被三除余二,被五除余三,被七除余二的最小整数.这个问题称作孙子问题,俗称韩信点兵.其正确解法叫做孙子剩余定理.2 .中国轲余定理的结论:令任意固定整数为M,当M/A余a,MZB余b,M/C余c,M/D余d,,M/Z余Z时,这里的A,B,C,D,,Z为除数,除数为任意自然数(如果为。,没有任何意义,如果为1,在孙子定理中没有计算和探讨的价值,所以,不包括O和1)时;余数a,b,c,d,Z为自然整数时.1 .当命题
2、正确时,在这些除数的最小公倍数内有解,有唯一的解,每一个最小公倍数内都有唯一的解;当命题错误时,在整个自然数范围内都无解.2 .当M在两个或两-个以上的除数的最小公倍数内时,这两个或两个以上的除数和余数可以定位M在最小公倍数内的具体位置,也就是M的大小.3 .正确的命题,指没有矛盾的命题:分别除以A,B,C,D,,Z不同的余数组合个数=A,B,C,D,,Z的最小公倍数二不同的余数组合的循环周期.【例1】有一个整数,除以3余数是2,除以5余数是3,除以7余数是4,这个数可能是多少?A.67B.73C.158D.22【答案】C【例2】一个自然数除以13余6,除以29余7,这个自然数最小是多少?【答
3、案】123【例3】一个数除以4余3,除以5余2,除以6余1,这个数最小是多少?【答案】7【例4】有一个数除以3余2,除以5余3,除以7余4,除以9余5.这个数至少是多少?【答案】158【例5】被4除余1,被5除余2,被6除余3的最小自然数是多少?【答案】57【例6】一个数被2,3,7除结果都余1,这个数最小是多少?【例7】被3除余2,被5除余4,被7除余4的最小自然数是多少?【答案】74【例8】一个数,它除以11余8,除以13余10,被3除余1,这个数最小是多少?【答案】283【例9】某数用6除余3,用7除余5,用8除余1,这个数最小是几?【答案】33【例10】一个数除以5余2,除以6余2,除
4、以7余3,求能漏足这三个条件的最小自然数是多少?【答案】122【例11】一个自然数除以3余2,除以5余4,除以7余6,这个自然数最小是多少?【答案】104【例12】一个数能被3、5、7整除,若用11去除则余1,这个数最小是多少?【答案】210【例13】筐橘子,三三数之余一,五五数之余四,七七数之余二,筐里最少有多少个橘子?【答案】79【例14】一堆糖.分给A、B、C三个班级的小朋友(每班人数互不相同),如果A班每人6颗,则多3颗;乙班每人7颗,则少3.颗;丙班每人8颗,则少7颗,问这堆糖至少有多少颗?【答案.】81【例15】有一筐苹果,甲班分,每人3个还剩11个;乙班分,每人4个还剩10个;丙
5、班分,每人5个还剩12个.那么这筐苹果至少有多少个?【答案】62【例16】有一盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒,乒乓球至少有多少个?【答案】123【例17】一筐苹果,如果按5个一堆放,最后多出3个.如果按6个一堆放,最后多出4个.如果按7个一堆放,还多出1个.这筐苹果至少有多少个?【答案】148【例18】五年级的学生排队做操,如果10人一行则余2人,如果12人一行则余4人,如果16人一行则余8人,那么五年级最少有多少人?【答案】232【例19】一个三位数被3除余1,被5除余3,被7除余5,这个数最大是多少?【答案】943【例20】设。是一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小升初专项训练 【小升初专项训练】10 孙子定理 小升初 专项 训练 10 孙子 定理