无线传感器网络的信道模型.docx
《无线传感器网络的信道模型.docx》由会员分享,可在线阅读,更多相关《无线传感器网络的信道模型.docx(19页珍藏版)》请在第一文库网上搜索。
1、安徽高校江淮学院本科毕业论文(设计、创作)题 目:基于压缩感知的稀疏信道估量方法争论同学姓名:卜竞斐 学号: JC104255系另计算机科学与技术专业:通信工程入学时间:2022 年 9 月导师姓名:蒋芳职称/学位:讲师/硕士导师所在单位:安徽高校电子信息工程学院完成时间:二。一四U1基于压缩感知的稀疏信道估量方法争论摘要在多径无线信道的高速数据通信通常需要接收器知道状态信息,因此,如何掌握信道的传播特性和参数估量是具有重要意义的数字无线通信系统的争论。就目前来说,我们所运用的导频方法是必需提前知道放射机所发送的导频信号,再与接收端所接收到的信号进行比较,经过处理后得到我们所要的信道响应。但是
2、,我们不难发觉这种处理由于插入的导频太多而占用大量的宽带,从而使频带的采用率大大降低。专家经过争论发觉:真正的无线通道的结构往往是稀疏,尤其是高速数据通信系统。如此一来,如何发掘和采用信道的稀疏性从而有效的进行信道估量就是争论的重点。近年来压缩感知(CS, Compressive Sensing)被看做是一种更好的信号猎取方式。压缩感知的理论指出信号在某个变化域内稀疏或近似稀疏就可以用低于奈奎斯特抽样定理的速率对稀疏信号进行采样并在收端以很高的概率重建信号。压缩感知是现在信号处理领域的争论热点也被看做是一种信号猎取的有效方式。本文介绍压缩感知的理论和信道估量的相关内容,以及正交频分复用(OFD
3、M, Orthogonal Frequency Division Multiplex 系统、超宽带(UWB, Ultra Wideband)系统和多输入多输出(multiple- input multiple output, MIMO )系统中基于压缩感知的稀疏信道估量方法,重点是压缩感知的重构方法。关键词:压缩感知;稀疏信道;正交频分复用;UWB;多输入多输出Study on sparse channel estimation method based on compressed sensingAbstractIn a multipath radio channel now of high-
4、speed data communication usually requires the receiver know stateinformation, so how to control the channel, channel propagation characteristics and the parameter estimation is ofgreat significance to the study of digital wireless communication system. Pilot current methods is the need to acceptthe
5、pilot signal is known in advance sent by the transmitter, and corresponding to the received signal phase contrast,through analyzing and processing the final channel response. But the pilot this approach into too much occupiedbandwidth, reduce the bandwidth efficiency. Through the study found: the st
6、ructure of real wireless channels isoften sparse especially high-speed data communication system. Thus, how to excavate and thus better channelestimation using the channel sparsity. In recent years, compressed sensing (CS, Compressive Sensing) is consideredas one of the effective signal acquisition.
7、the compressed sensingtheory points out signal in a changing domainsparse or approximate sparse can use rate than the Nyquist sampling theorem for sparse signal sampling andreconstruction of signals at the receiving end with very high probability. Compressed sensing is now the researchfocus in the f
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 无线 传感器 网络 信道 模型
